
@IITSEC NTSAToday

Distributed Interactive Simulation (DIS) 101: The Basics

Don Brutzman and Don McGregor
Modeling, Virtual Environments, Simulation (MOVES) Institute

Naval Postgraduate School (NPS)
Monterey California USA

brutzman@nps.edu

mailto:brutzman@nps.edu

@IITSEC NTSAToday

Learning Objectives

The learner will be able to…

 Identify what standards are used by distributed simulations for military use.

 Identify what types of communication protocols are used for various networks.

 Identify what aspects needs to be standardized, and what aspects can be

customized, to support diverse simulations with differing models and goals.

 Identify how DIS techniques for dead reckoning (DR), visual smoothing and

distributed collision detection can reduce network traffic.

2

@IITSEC NTSAToday

Topics

 What is distributed simulation?
 Military modeling & simulation distributed simulation standards
 Underlying TCP/IP networks
 DIS: goals, design principles, basic structure, Entity State PDUs
 DIS: distributed identification of participants, Entity Types and Entity IDs
 DIS: tracks and Coordinate Systems, real time clock, packet PDUS, code APIs
 DIS: shooting, Dead Reckoning, Smoothing, visual synchronization
 DIS and Open-DIS: DIS version 8 development, ongoing implementation efforts
 Resources and References for further activity

3

@IITSEC NTSAToday

Distributed Simulation Terms

 A distributed simulation runs on multiple cooperating hosts on the network

 State information describes the position, orientation, and other information
about an entity at a point in time

 Live, Virtual, Constructive (LVC) simulation involves different hosts doing
different aspects of simulation in one cooperative system
 Live: Real people, real systems
 Virtual: Real people, simulated systems (human in loop)
 Constructive: simulated people, simulated systems (AI controlled)

4

@IITSEC NTSAToday

Live, Virtual, Constructive (LVC) Example

 Automatic Identification System (AIS) is a standard for transmitting the current
position of commercial ships in the real world; ships have a transmitter and
receiver on board and send information in a standard format. This is a live
component (real system, real people)

 Ship simulators portray a simulated virtual view of navigation from the
perspective of a ship’s bridge, perhaps in a “cave” environment with wall-sized
screens. This is a virtual component (real people, simulated system)

 We can also inject simulated, computer-generated ships controlled by AI into
the simulation. This is a constructive component (simulated system controlled
by simulated people)

@IITSEC NTSAToday

Participants may be
local or distributed

Live, Virtual, Constructive (LVC) Example, Illustrated

Virtual: bridge simulator Live: AIS feed

Single
Shared LVC

Environment

Constructive: computer-
generated ship traffic,
controlled by AI agents

@IITSEC NTSAToday

What Do We Want to Do?

 DIS has been running and evolving since early 1990s, remains widely used in many applications

 People who want to learn about Distributed Interactive Simulation (DIS) usually are in the
“virtual” or “constructive” domains, though it can also be used in the live domain
 They want to simulate ships, tanks or other entities in the 3D world, controlled by humans or AI

 We need to exchange state information between hosts on the network about entities in the world
 To view someone else in the simulation, we need to know their position, orientation, and other state

information, and this information needs to be sent to us by them

 Typically entities are controlled by different hosts that are connected via a network. The state
information is usually exchanged over the TCP/IP protocol

7

@IITSEC NTSAToday

State Information in Distributed Simulations

8

State Information

Location, Orientation, Velocity, etc of Entities
Sent over a TCP/IP network

Tank Simulator Helicopter Simulator

@IITSEC NTSAToday

What’s So Hard About That?

 The format of state update messages needs to be exactly specified.
 What coordinate system should you use? You need one that works well for ground and air

systems, and can handle curvature of the earth issues.
 Text or binary format messages?
 The order in which the fields appear?

 Network issues: what happens if a message is dropped?
 Scalability issues: how can we get a reasonable number of entities to participate?
 Latency: can we keep the message delay reasonable?
 Do all participants have a consistent, coherent operational picture?

9

@IITSEC NTSAToday

Distributed Simulation Standards

 There are many ways to exchange the state information, but we want a
standard way so we can interoperate with simulations from many vendors
rather than being locked in to one. We don’t want to use only one vendor’s
proprietary method, for which we will pay dearly

 In the case of defense modeling and simulation, the big three are
 TENA: Test and Training Enabling Architecture
 HLA: High Level Architecture
 DIS: Distributed Interactive Simulation

 TENA and HLA borrow many semantic concepts from DIS. Understanding DIS
has many carry-over benefits when working with other standards.

10

@IITSEC NTSAToday

State Information Exchange Standards

11

Controlling Host Receiving Host

DIS

HLA

TENA

The controlling host sends the state information update
via one of the standards to other hosts

State Information Updates

@IITSEC NTSAToday

TENA

 Used on ranges; often the “L” in Live-Virtual-Constructive simulations
 Designed for real time and embedded systems, real sensor systems, etc.
 In effect it is thinly disguised CORBA distributed objects with multiple

new features to help it work in a simulation environment
 Can gateway it to other standards, such as DIS or HLA
 See http://tena-sda.org

12

http://tena-sda.org

@IITSEC NTSAToday

High Level Architecture (HLA)

 HLA is very general and intended to cover most defense modeling domains
including training, analysis, and engineering in addition to virtual worlds

 Participants communicate via an agreed-upon Federation Object Model (FOM)
and an API associated with a Run-Time Infrastructure (RTI)

 Specification is maintained by SISO (http://sisostds.org), is IEEE standard 1516
and has implementations by
 MAK (http://www.mak.com),
 Pitch (http://www.pitch.se),
 Portico (older version) (http://porticoproject.org) and others

 http://www.pitch.se/hlatutorial is a good introduction to HLA

13

http://www.mak.com/
http://www.pitch.se
http://porticoproject.org
http://www.pitch.se/hlatutorial

@IITSEC NTSAToday

Distributed Interactive Simulation (DIS)

 DIS was the first standard to tackle these problems in a systematic way
 Originated in the SIMNET project in the 80’s. DARPA supported converting the

SIMNET research into a standard; SISO developed the standard and took it to
IEEE for approval.

 This means anyone can get the standard from IEEE, implement it, and
participate in a simulation

 Development of standard continues; updated DIS standard version 7 is the
latest approved version. SISO maintains the standard and presents it to IEEE
for standards approval

 Substantial commercial support, open source implementations, many home
grown implementations of portions of the standard

14

@IITSEC NTSAToday

Distributed Interactive Simulation (DIS) functionality

 What does DIS support?
 A standardized way to exchange messages about entities in a

virtual world

 Common semantics for coordinate systems and other information,
such as how to describe and specify entities

 Common practices to ensure interoperability

15

@IITSEC NTSAToday

Networking: the Protocol Stack

 DIS defines the format of the messages, but doesn’t specify how to
get the messages from one host to another. Almost always this is
done via TCP/IP

16

Link and Physical
IP

TCP Sockets
ApplicationDIS Implementations

How messages are
transmitted between
hosts: TCP/IP
protocol, implemented
by host operating
system

UDP Sockets

@IITSEC NTSAToday

TCP/IP and UDP

 TCP sockets have higher latency, higher jitter (variation in latency), and doesn’t scale to
large numbers of hosts as well

 UDP sockets have lower latency, lower jitter, scales to large numbers of participants better,
but are unreliable

 DIS typically uses UDP
 Hold on—UDP is unreliable? What’s up with that?

 Individual UDP messages may be dropped by the network; there’s no guarantee that a UDP message will
be delivered. This is a tradeoff to achieve lower latency and jitter, and better scalability

 This is not as big a deal as it might seem. If we’re getting position updates from an entity every 1/30th of a
second, does it matter if we drop one? We have better information coming along shortly, so why try to
resend the dropped message?

17

@IITSEC NTSAToday

DIS Messages

 We know what we want to do: send a message that tells another host what the
state of an entity is

 We know how we do this: we send the message via TCP/IP, typically in a UDP
message over broadcast or multicast

 What is the actual format of the messages? This is specified by the DIS
standard.
 There are dozens of possible messages to send, relating to everything from logistics to

electronic warfare to radio communications
 Each message type is called a “Protocol Data Unit” (PDU)

18

@IITSEC NTSAToday

DIS Messages

PDU

Entity Information

Entity State Collision

Warfare

Fire Detonate

…

Several dozen different messages (called Protocol Data
Units, or PDUs) to describe entity movement, collisions,
combat, radio communications, logistics, and more. The
Entity State PDU is the most widely used

19

@IITSEC NTSAToday

DIS Messages: Entity State PDU

 We use ESPDU when want to inform other hosts of the position of an entity we
control—the most common PDU

20

Entity sends ESPDU with
• Unique ID
• Position (xyz) in standard coordinate system
• Orientation
• What type of vehicle it is
• More….

@IITSEC NTSAToday

Entity ID: a Unique Identifier

 Before we can tell an entity “hey you, do that” we
need a way to differentiate between entities

 The entity ID is a unique identifier for each
simulation object in the world. In DIS this is done
via a triplet of three numbers: the Site,
Application, and Entity

 These three numbers taken together must be
unique for each entity

21

@IITSEC NTSAToday

DIS: Entity IDs

 Example: before the simulation starts we agree, simulation-wide, on the
following arbitrary numbers. Here are simple possibilities:

22

Site Number
China Lake 42
Norfolk 17
Orlando 23

Application Number
YoYoDyne M1A2 Simulator 112
ACME UCAV Simulator 417
JCATS 512

@IITSEC NTSAToday

Entity IDs

23

Tank Simulator
EID: (42, 112, 18)
EID: (42, 112, 19)

Helicopter
EID: (17, 417, 18)

ACME (417) simulator at
Norfolk (17) controls a
Helicopter (entity 18)

YoYoDyne simulator (112) at
China Lake (42) controls two
distinct tanks, 18 and 19

@IITSEC NTSAToday

DIS: Entity Type

 We may need some other information. What if we want to
draw this entity? We need to know what this is—a tank, a
helicopter, a ship?

 This is done via something called the Entity Type, which in
turn depends on a SISO document called the “Enumeration
and Bit Encoded Values” (EBV).

 The EBV document is a long listing of standardized record
values that lets us identify military hardware

24

@IITSEC NTSAToday

Entity Type

25

{
Kind: 1 (entity)
Domain: 1 (Land)
Country: 225 (US)
Category: 1 (Tank)
Subcategory:1 (M1)
Specific: 6 (M1A2)

}

Whenever a DIS message has an entity type record with the above settings
we know it’s referring to an M1A2 tank. What the numbers are doesn’t
matter, as long as all participants agree on what they mean. SISO maintains
this list of arbitrary numbers, called the EBV document

@IITSEC NTSAToday

Entity Type From EBV Document

26

@IITSEC NTSAToday

Entity Type

 The EBV document has gone through many versions as new hardware has
been added. An important checkpoint for consistency: all participants in the
simulation should agree on the version of the EBV document used.

 In reality this is hard; some simulations have not been updated to reflect new
EBV documents, and sometimes those implementing a simulation simply make
up numbers, and no simulation implements all entities in the EBV.

 You may need a gateway such as Joint Simulation Bus (JBUS) to act as a
“shim” connection between simulations and change entity type values to match
what is expected. The gateway can rewrite the entity type values in the PDUs to
force them to match expectations.

 The EBV enumerations are also often used in HLA RPR-FOM and in TENA.

27

@IITSEC NTSAToday

Entity State PDU: Position

 What does it mean if we say an entity is at (x, y, z)? This has no meaning
without a coordinate system. We need to agree on one, and where the origin is

 DIS chose to use a Cartesian, geocentric coordinate system because

28

It’s easy to convert from that to other
coordinate systems, such as geodetic
(latitude, longitude, altitude) or military
Systems such as MGRS

@IITSEC NTSAToday

DIS: Coordinate Systems

 Very often simulations set up a local,
flat-plane coordinate system at a point
tangent to a point on the earth’s surface,
and use that for local physics and
movement. When the ESPDU is actually
sent the local coordinates are changed
back to the global coordinate system.
The SEDRIS SRM package can do the
math

 Nobody will ever agree on which way the
local coordinate system axes should
point for all simulations

29

@IITSEC NTSAToday

Coordinate Systems

30

X

A local Cartesian coordinate system origin is set at {lat, lon, alt}. The simulation
does all its calculations and movement in this coordinate system, because it’s convenient. Before
sending entity information out in a DIS ESPDU, convert from local to geocentric
(DIS) coordinates

Local coordinate system origin
At lat 43.21, lon 78.12, alt 120m, WGS 84

X (East)

y (North)
Entity position can be expressed in:

Local: (10, 10, 4)
Geodetic: 43.21001 N, 78.12012W, 124
UTM: Zone 44N, 266061E, 4788172N, 124M
DIS: 958506.1, 455637.2, 4344627.4

We have enough information to convert
from one coordinate system to another if we know
the local coordinate system origin!

@IITSEC NTSAToday

DIS: Dead Reckoning (DR) Algorithms

 If we’re running a visual simulation, how often do we need to send ESPDUs?
 If running at frame rate, maybe about every 1/30th of a second.

 If we have 500 entities in a simulation, this can work out to 15,000 UDP messages per
second. If you’re doing other computation on the host this will tax your CPU and
network

 Do we really need to send that fast? If we know how fast and in what direction
an entity is moving, we can dead reckon in between receiving an ESPDU and
draw our entity there.
 Sure, we’re lying to the user. Got a problem with that? If our DR is wrong, we just

correct our position stealthily when we get better info on the next packet. The user won’t
know the difference, probably.

 Due to latency all simulation participants are a little out of sync anyway

31

@IITSEC NTSAToday

DIS: Dead Reckoning

Time

ESPDU Updates

Aircraft position & orientation updated by dead reckoning updates between ESPDU messages

ESPDU 2 ESPDU 3

DR updates

@IITSEC NTSAToday

DIS: Dead Reckoning

 What DR algorithm is best? (… wait for it…)
 It depends! In some situations we might want to include acceleration

or angular velocity, but not in others. The ESPDU sender specifies
what DR algorithm to use

 The sender can also perform its own DR to determine what the
recipients are seeing. If the sender decides the clients are probably
wrong in their guess about where the entity is, it can issue another
ESPDU with better location information

33

@IITSEC NTSAToday

DIS: Learning About the World and Heartbeat

 If we’re running a DIS simulation, how do we learn about all the other entities in
the world?
 One design choice DIS could have chosen is to use a server. Instead, the designers

chose for DIS to be peer-to-peer; there is no central server, and hosts talk to one
another directly

 In DIS all we have to do is listen for ESPDUs. The ESPDUs contain what we
need to know: entity type, location, velocity, orientation. This is simple and
avoids a single point of failure, and makes configuration easy
 There are also Simulation Management PDUs for announcing arrival, removal, etc.

 To make this work, every entity must periodically send a time-stamped ESPDU
even if its state hasn’t changed. This is called a heartbeat. Usually entities must
send an ESPDU at least once every five seconds

34

@IITSEC NTSAToday

DIS: Timestamp

 One of the oddities of UDP is that UDP packets may be duplicated during
TCP/IP routing; we send a single packet, but two might arrive nevertheless.

 UDP packets may also arrive out of order. We send packets in order A, B, C,
but they arrive in order C, A, B
 This creates problems for position updates! How to handle?

 DIS includes a timestamp field to detect these kinds of problems
 The field typically represents time since the top of the hour (as common practice)
 If the next packet we receive has a timestamp before the last packet we processed, we

can discard it; it’s old information that has been obviated by new data
 Time coordination between hosts useful but not required

@IITSEC NTSAToday

DIS: Timestamp

Host A sends 1 and then 2. Host B receives 2, and then 1.
We should discard 1, because we know it’s older than 2,
due to its older timestamp.

2 1

1 2

@IITSEC NTSAToday

DIS: Entity State PDU

 So far we’ve looked at an ESPDU, which contains
 Entity ID
 Entity Type
 Position, orientation, velocity, etc
 Specifies a DR algorithm for the receiver to use
 Timestamp

 We’ve also seen that we need to agree upon a coordinate system,
and agree on the enumerations that describe things like entity type.

37

@IITSEC NTSAToday

DIS: no approved Application Programming Interface (API) per se

 DIS doesn’t have an API. This seems strange to people coming from HLA or
TENA, but reflects common practice in networking protocols
 The standardized part is the format of the messages on the wire. The standard is silent

about how to create or receive those messages
 Different DIS vendors have different APIs, but all produce the same format messages.

This is in contrast to HLA, which has a standard API, but is silent about the format of
messages on the wire. As a result, different HLA RTI vendors usually use different
message formats for exchanging information

 TENA standardizes the API, and there is a single approved implementation of the RTI
equivalent; this sidesteps the wire standard problem because there is only one
approved equivalent of the RTI

38

@IITSEC NTSAToday

DIS: Message Format Standardized

39

Vendor A API for
DIS

Vendor B API for
DIS

Vendor C API for
DIS

Standard Format Messages

JCATS Sim Code ACME Sim Code

ONE-SAF Sim
Code

Network

@IITSEC NTSAToday

HLA: API Standardized

40

HLA RTI API HLA RTI API

HLA RTI API

RTI Vendor-Specific Format
Messages

JCATS ACME Sim

ONE-SAF

Network

While the API is standard, implementations of the HLA RTI API from different vendors are allowed
to produce messages in different formats.

@IITSEC NTSAToday

DIS: API

 The implications of this are that while HLA has a standardized API, RTIs from
different vendors can’t typically talk directly to each other. This makes changing
vendors easy, but makes getting RTIs from different vendors talking to each
other hard--you need to use a gateway

 DIS in contrast makes changing vendors hard (since it involves changing the
API your simulation code uses) but talking between vendors easy (since all the
messages on the wire are in the same format)
 The lack of an API can help when using unusual languages, such as Objective-C, C#, Python, and

Javascript. Since there’s no API, just make one up. As long as they produce standard messages, it
doesn’t affect anyone else

41

@IITSEC NTSAToday

DIS: PDU Format

 Remember, all this information is being sent in binary format in (typically) a
UDP packet

 The exact format that an ESPDU must have on the wire is specified in the DIS
standard. This includes byte order

 For example, the EntityID field starts 12 bytes into the ESPDU message, is in
the order (site, application, entity), and each field entry is 16 bits long, in
network byte order, and unsigned

42

@IITSEC NTSAToday

DIS: ESPDU Format

43

@IITSEC NTSAToday

DIS: Looking at ESPDUs

 What do ESPDUs look like? We can examine them on the network
with a free tool called Wireshark, which can decode DIS packets
 http://www.wireshark.org

 Remember, it’s the format of the messages on the wire that count.
The DIS standard specifies the exact format of binary messages, and
any tool that produces or consumes those messages is fine with DIS.
How you create them is none of DIS’s business

44

http://www.wireshark.org/

@IITSEC NTSAToday

Wireshark: Capture Packets

45

@IITSEC NTSAToday

Wireshark: Decode Packets as DIS

46

@IITSEC NTSAToday

Wireshark: Examine DIS Packets

47

@IITSEC NTSAToday

DIS: Implementations

 Format
 We know what information we want to send: entity type, entity ID, position,

orientation, etc.
 We know what coordinate system we want to use
 We know where to find arbitrary, agreed-upon enumeration identifier

values—the EBV document
 We know some PDU types: entity state PDU, etc.

 How do we get the information into the format we want on the wire?
 This is where DIS implementations come in

48

@IITSEC NTSAToday

DIS: Implementations

 Where can you get a DIS implementation?
 Write your own (cough cough)
 Buy one. There are several commercial implementations and many have excellent support
 Use an open source version—”free as in free puppy”

 Open-DIS (https://github.com/open-dis - formerly http://open-dis.sourceforge.net)
 Java, C++, C#, Objective-C, JavaScript, Python

 KDIS (http://sourceforge.net/projects/kdis)
 C++

 Aquarius (http://sourceforge.net/projects/aquariusdispdu)
 C++

 JDIS (http://sourceforge.net/projects/jdis)
 Java

49

https://github.com/open-dis
http://open-dis.sourceforge.net
http://sourceforge.net/projects/kdis/
http://sourceforge.net/projects/aquariusdispdu/
http://sourceforge.net/projects/jdis

@IITSEC NTSAToday

DIS: Sending

 Remember, DIS has no official API. Every implementation is different. This
example will use the Open-DIS API codebase. Implementation available at
https://github.com/open-dis

 Source code for this example is available at http://www.movesinstitute.org/DIS

 The example contains a lot of supporting libraries for other things. Ignore all
that for now.

 All code is BSD open source license; nonviral, use any way you see fit

50

https://github.com/open-dis
http://www.movesinstitute.org/DIS

@IITSEC NTSAToday

DIS: Send ESPDUs in Java

51

@IITSEC NTSAToday

DIS: Send PDUs in Javascript

Can use HTML5 Browser geolocation and Javascript to send
DIS from a web page

@IITSEC NTSAToday

DIS: Receive PDUs in Java

53

@IITSEC NTSAToday

DIS Sending and Receiving PDUs

 There are similar idioms for other languages such as C++, Objective-
C (IOS/MacOS), Javascript, Python, C# (Windows phone, Unity 3D)

 Note that this requires that you do a bit of socket programming, which
TENA and HLA hide from you. Socket programming isn’t that bad…

54

@IITSEC NTSAToday

Visualizing DIS Data via Online Map using DISWebGateway

 DISWebGateway running at
 http://track.movesinstitute.org

 Java sender & receiver for DIS

 Can receive native DIS from
existing DIS applications

 Web-based map that shows DIS
entity locations

https://github.com/open-dis/DISWebGateway
http://track.movesinstitute.org/

@IITSEC NTSAToday

DIS: Shoot at Something

 We’ve been sending ESPDU messages back and forth, but there are
dozens of other sorts of messages. What if we want to shoot at
someone? What does this involve?

 We can use a Fire PDU, which contains
 The entity ID of the shooter
 The entity ID of the target (if known)
 The type of munition being fired, fuse, quantity, etc. This is very similar to

the entity type
 Enough information to compute the path of the munition (if desired)

59

@IITSEC NTSAToday

DIS: Shoot at Something, then…

 The Detonation PDU usually follows a Fire PDU. It contains
 Location of detonation, shooter entity ID, target entity ID
 Fuse, munition type, and so on

 When a Detonation PDU is received simulations assess and report damage to
their own entities, not to others.
 This means simulations are on the honor system for determining damage; thus James

T. Kirk can beat the unwinnable Kobayashi Maru scenario.
 Here is a harsh adjective to describe cheating in distributed scenarios: boring.
 For military simulations we are much more interested in strengths, vulnerabilities and

possibilities that may occur in the real world. Thus cheating is also critically unhelpful.
 Trusted participants using trusted software suites can reduce the risk of cheating.

60

@IITSEC NTSAToday

DIS Shooting

Fire! I’m entity (17, 23, 42), shooting
at entity (123, 7, 12) with a HEAT round
from (x, y, z)

Explosion! There’s an detonation of a HEAT
round at (x’, y’, z’).

All entities now assess the damage to themselves by the
Detonation at (x’, y’, z’)

@IITSEC NTSAToday

DIS: Arbitrary Data

 You can also exchange arbitrary data between DIS simulation participants with
the DataQuery and Data PDUs.
 Participant sends a DataQuery PDU addressed to another participant
 That participant responds with a Data PDU

 The data itself is sent as “fixed variable datums” or “variable data datums”.
Therefore it’s up to you to specify the exact format of these

@IITSEC NTSAToday

DIS: Other messages

 There are many other messages that can be used in DIS
 Electronic warfare
 Logistics
 Directed energy weapons
 Voice/Intercom
 Collisions
 Simulation management
 Data exchange

 It’s a big topic!
 But the basics are: a standard format for exchanging state information

63

@IITSEC NTSAToday

Dead Reckoning (DR), Smoothing, Synchronization

 Dead Reckoning (DR) is projection of entity location based on last received
timestamp, position and vector-based velocities/accelerations
 Enables recipients to more accurately estimate entity state in-between PDU updates
 Enables senders to more accurately estimate when to send more-frequent updates

 Smoothing is a recipient-presentation technique for handling dropped packets
 Avoid sudden jerky jumps in motion, instead interpolate from prior estimate to new state
 No need to improperly distract user with corrective actions when recovery is satisfactory

 Synchronization among multiple players is a blend of capabilities
 Networking monitoring and management, simulation management, logging, etc.
 Measurable metric: is a “fair fight” taking place among distributed participants?

@IITSEC NTSAToday

DIS: keeping it real, with less throughput required

 Dead Reckoning (DR) algorithms use projected trajectory information (such as
linear or rotational velocities and accelerations to compute how often network
updates need to be sent. Helpful for quiet and intensely active intervals.

 Visual smoothing techniques hide when packets are dropped or arrive late.
Entity display smoothly interpolates to the correct location and direction,
avoiding distracting jumps that do not correctly represent behavior anyway.

 Having each individual entity honorably compute whether collisions occurred
takes advantage of highest fidelity information with least computation, avoiding
expensive time delays and greater inaccuracies of server-based adjudications.

@IITSEC NTSAToday

DIS and Other Standards: HLA, TENA

 How can DIS interoperate with HLA or TENA?

 HLA Real-time Platform Reference Federation Object Model (RPR-FOM)
 Intentionally matches DIS, same entity types, same entity IDs and coordinate system, etc.
 HLA object model mapping makes transition from DIS to HLA easy and consistent
 Several gateways to translate between DIS and RPR-FOM. JBUS, AMIE, others
 Guidance, Rationale and Interoperability Modalities (GRIM) for RPR-FOM standard

provides further rules and usage information.
 https://www.sisostds.org/productspublications/standards/sisostandards.aspx

 TENA has generalized gateway functionality that can map TENA events to DIS
and vice versa. It generally uses the same coordinate system, entity types, etc.

66

https://www.sisostds.org/productspublications/standards/sisostandards.aspx

@IITSEC NTSAToday

DIS Research Topic: DIS in the Web Page

 Websockets are a standard from IETF and W3C. The idea is to provide a direct
Javascript-based TCP socket into a web page without having to use AJAX
polling techniques. Widespread browser support

 Javascript is a widely used language for dynamic web content
 WebGL is Javascript binding for OpenGL which allows us to use accelerated 3D

graphics inside the web page
 WebGL can be the substrate for higher level graphics standards such as X3D

 Put all three together and you can implement a networked virtual environment
in a web page

67

@IITSEC NTSAToday

DIS Research Topic: 3D in the Web Page

68

Web
Server

Network with
conventional
binary-format
DIS packets

Web pages with Javascript
WebGL scene updated by
DIS over a Websocket

@IITSEC NTSAToday

DIS Research Topic: 3D in the Web Page

69

@IITSEC NTSAToday

Applied Research using WebLVC

 Excellent combinations of WebGL/X3D, WebSockets, and fast JavaScript in the
web browser have emerged in recent years
 Open-DIS library can send DIS PDUs directly into a web browser

 SISO WebLVC Product Development Group (PDG)
 https://www.sisostds.org/StandardsActivities/DevelopmentGroups/WebLVCPDG.aspx

 One of many examples: Virtual World Framework
 http://virtualworldframework.com and https://en.wikipedia.org/wiki/Virtual_world_framework

 Active research topic… but no wide-scale “Ready Player One” arenas for DIS, yet

70

https://github.com/open-dis
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/WebLVCPDG.aspx
http://virtualworldframework.com/
https://en.wikipedia.org/wiki/Virtual_world_framework

@IITSEC NTSAToday

DIS Tutorial Summary

 DIS applications exchange state information among distributed set of players.

 Defines syntax and semantics for a series of binary-formatted messages, with
each packet’s bytes, data representation and functionality exactly defined.

 Different software APIs can implement the same “over the wire” data standard.

 Applications focused on large-scale, high-fidelity, virtual / constructive sims.

 Common concepts: entity types, entity IDs, heartbeats, coordinate systems.

71

@IITSEC NTSAToday

Resources and References

 SISO: http://sisostds.org
 SISO DIS Protocol Support Group:

https://www.sisostds.org/StandardsActivities/DevelopmentGroups/WebLVCPDG.aspx
 Open-DIS: https://github.com/open-dis
 SEDRIS SRM: http://sedris.org
 Kdis: http://kdis.sourceforge.net
 Wireshark: http://wireshark.org
 WebGL: http://www.khronos.org/webgl
 X3D: http://www.web3d.org and http://x3dgraphics.com/slidesets
 WebLVC: https://www.sisostds.org/StandardsActivities/DevelopmentGroups/WebLVCPDG.aspx
 WebSockets: http://tools.ietf.org/html/rfc6455 , http://www.w3.org/TR/websockets

72

http://sisostds.org
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/WebLVCPDG.aspx
https://github.com/open-dis
http://sedris.org
http://kdis.sourceforge.net
http://wireshark.org
http://www.khronos.org/webgl
http://www.web3d.org/
http://x3dgraphics.com/slidesets
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/WebLVCPDG.aspx
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets

	Slide Number 1
	Learning Objectives
	Topics
	Distributed Simulation Terms
	Live, Virtual, Constructive (LVC) Example
	Live, Virtual, Constructive (LVC) Example, Illustrated
	What Do We Want to Do?
	State Information in Distributed Simulations
	What’s So Hard About That?
	Distributed Simulation Standards
	State Information Exchange Standards
	TENA
	High Level Architecture (HLA)
	Distributed Interactive Simulation (DIS)
	Distributed Interactive Simulation (DIS) functionality
	Networking: the Protocol Stack
	TCP/IP and UDP
	DIS Messages
	DIS Messages
	DIS Messages: Entity State PDU
	Entity ID: a Unique Identifier
	DIS: Entity IDs
	Entity IDs
	DIS: Entity Type
	Entity Type
	Entity Type From EBV Document
	Entity Type
	Entity State PDU: Position
	DIS: Coordinate Systems
	Coordinate Systems
	DIS: Dead Reckoning (DR) Algorithms
	DIS: Dead Reckoning
	DIS: Dead Reckoning
	DIS: Learning About the World and Heartbeat
	DIS: Timestamp
	DIS: Timestamp
	DIS: Entity State PDU
	DIS: no approved Application Programming Interface (API) per se
	DIS: Message Format Standardized
	HLA: API Standardized
	DIS: API
	DIS: PDU Format
	DIS: ESPDU Format
	DIS: Looking at ESPDUs
	Wireshark: Capture Packets
	Wireshark: Decode Packets as DIS
	Wireshark: Examine DIS Packets
	DIS: Implementations
	DIS: Implementations
	DIS: Sending
	DIS: Send ESPDUs in Java
	DIS: Send PDUs in Javascript
	DIS: Receive PDUs in Java
	DIS Sending and Receiving PDUs
	Visualizing DIS Data via Online Map using DISWebGateway
	Slide Number 56
	Slide Number 57
	Slide Number 58
	DIS: Shoot at Something
	DIS: Shoot at Something, then…
	DIS Shooting
	DIS: Arbitrary Data
	DIS: Other messages
	Dead Reckoning (DR), Smoothing, Synchronization
	DIS: keeping it real, with less throughput required
	DIS and Other Standards: HLA, TENA
	DIS Research Topic: DIS in the Web Page
	DIS Research Topic: 3D in the Web Page
	DIS Research Topic: 3D in the Web Page
	Applied Research using WebLVC
	DIS Tutorial Summary
	Resources and References

