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1. The Basics of DES: States, Events, and the Event List 

We begin with a minimal description of the elements in a Discrete Event Simulation 

(DES) model.  These elements are: 

1. States 

2. Events 

3. Scheduling relationships between events 

It is furthermore necessary to have an understanding of how time advance works in DES, 

namely the next event form of time advance.  This is implemented using the future event list.  A 

small extension to the minimal DES description is the inclusion of parameters, which enable 

many models to be specified with a single description. 

1.1. States 

A state variable in a DES model is one that has a possibility of changing value at least 

once during any given simulation run. The collection of all state variables for a given DES model 

should give a complete description of the simulation model at any point in time. The collection 

of all state variables is called the state space.  The value of a given state variable over time is 

called as state trajectory. DES state trajectories are not arbitrary, but must be piecewise constant, 

as shown below in Figure 1-1. That is, the state must stay constant in a given value for a certain 

period of time, then instantaneously change value to something else and stay at that value for 

another period of time. Thus, DES state trajectories are extremely simple. 

 

Figure 1-1. A Typical DES State Trajectory 

However, not every possible variable is capable of being represented as DES state 

variable because of this restriction. Any variable whose state trajectory is not piecewise constant 

cannot be represented as a DES state. Figure 1-2 shows several state trajectories for variables 

that cannot be represented as DES states. 
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Figure 1-2. State Trajectories for Non-DES States 

The inability to represent state trajectories such as those shown in Figure 1-2 may seem 

to make Discrete Event Simulation a very restrictive methodology.  However, it turns out that 

restricting state variables to have piecewise constant trajectories as in Figure 1-1 is not as much 

of a limitation as might appear. Variables that change continuously can be modeled in DES – the 

modeling of such states requires a bit more effort and will be discussed later. For now, the reader 

will have to take it on faith that DES is a sufficiently flexible approach to modeling many varied 

systems and that the restriction of DES state variables is not such a big liability.  It turns out that 

the benefits can outweigh the limitations. 

One advantage of this restriction is that the focus of the model can be on the rules by 

which each state variable changes value. Such a rule is called a state transition function, or more 

simply a state transition. Because each state transition occurs instantaneously (in simulated time 

at least), each state transition function can be identified with an instantaneous occurrence of an 

Event. The marks on the horizontal axis in Figure 1-1 show the occurrence of Events for that 

state variable. These Events are the building blocks of a DES model and are one of the primary 

reasons why restricting possible DES states is a beneficial tradeoff. 

The next step in the construction of a DES model is therefore to define each state 

transition as an event and give them each a name associated with that state transition. A 

particular simulation run thus consists of a sequence of events, whose state transitions result in 

state trajectories for each state variable. 

1.2. Events 

A DES Event begins by defining its state transition, as described above. An Event can 

change a few state variables (possibly even none) or it may cause many state variables to change.  

Each state transition is a mapping from a model’s state space into itself. For each possible state 

transition an Event must be defined.  Everything else being equal, it is best to define models that 

have many simple state transitions than a few complex state transitions. 

Defining the Events alone is not sufficient to fully describe how a simulation run will 

unfold. Also needed are rules that determine what the next Event will in fact be. The way a DES 

model describes this is by forming scheduling relationships between Events. That is, a particular 

Event may cause another Event to be scheduled sometime in the future. For example, if an Event 

is that a ball is thrown in the air, a second Event might be that the ball lands on the ground. The 
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first Event (Throw Ball) would schedule the second (Ball Lands) at a time in the future that 

depends on how the ball was thrown. Note that the trajectory of the ball itself might resemble the 

parabola in the left graph of Figure 1-2. However, in many cases we might not care so much 

about the exact location of the ball at every point in time, but only in the way it changes things 

when it lands.1 

Thus, each Event is completely defined by specifying its state transition function. A 

complete specification of a DES model therefore has an event for every possible change of state 

that could occur, that is, for every possible state transition function. 

The DES model is still not yet complete, however, when all state transitions are defined.  

The final element in the model description is to specify for Event every possible future Event it 

could directly “cause.” This is the scheduling relationship between events and is seen as a 

directed relationship between the collection of Events. As will be seen soon, these relationships 

can be expressed simply and intuitively as a graph. 

1.3. Time Advance 

The method of time advance in DES models is termed Next Event. Rather than advancing 

time in a regular, consistent manner, DES simulation time moves in typically unequal 

increments, jumping from the scheduled time of one Event to another: thus, the term Next Event. 

 

Figure 1-3. Next Event Algorithm 

The Next Event algorithm is shown in Figure 1-3, and as can be seen is quite simple.  

However, each step does need some explanation. 

1. Schedule Initial Event. An Event is placed on the Event List scheduled to occur at time 0.0.  

This special event (which we will call Run) is responsible for initializing all state variables as 

 
1 If we are indeed interested in the exact location of the ball we can model that in DES as well – simply apply the 

equation of motion for the ball’s trajectory. 
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its “state transition” as well as scheduling any initial “real” events of the model.  Otherwise, 

Run is treated like any other event. 

2. Is Event List Empty? If the Event List is empty, then stop; otherwise proceed to the next 

step. If there are no schedule pending events, then there is nothing to do! 

3. Advance Time to Earliest Scheduled Event. Simulation time is “advanced” to the time of 

the earliest scheduled event.  Note that this could result in time being incremented by a very 

large amount or by a very small amount; it is possible that the “advance” may be 0.0. Note 

that this is in contrast to “time-step” time advance, in which simulated time is increased in 

specified increments. 

4. Remove Event. The Event from the previous step is removed from the Event List. 

5. Execute State Transitions for Event. All state transitions associated with the Event are 

executed, resulting in an instantaneous change of state according to the state transition 

function description. 

6. Schedule Events. The scheduling of future Events by this Event is performed, if called for 

by the model.  This scheduling consists simply of placing new Events on the Future Event 

List described in the next section.  No other state changes occur. An Event may or may not 

schedule future Events; furthermore, whether it does or doesn’t may be conditionally 

determined by the state. That is, whether another Event is scheduled may depend on the state 

of the simulation after that Event’s state transitions are executed. 

When all Events that are specified have been scheduled (if any), the process continues by 

returning to Step 2. 

Figure 1-3 can also be summarized by the following pseudo-code. 

Initialize: 

 Set simulation time to 0.0 

 Schedule the Run Event 

While (There are pending Events): 

 Advance time to next Event 

 Remove Event from Event List 

 Execute State transition for Event 

 Schedule any Events as specified by the model 

Understanding the Next Event algorithm is critical to effectively creating DES models. 

The precise mechanism for implementing it may vary, but the logic remains the same. The most 

important implementation concept is that of the Future Event List, which is explained further in 

the following section. 

A common implementation of the Initialize step is to identify a special Event that is 

always scheduled to occur at time 0.0. This Event, which we call Run, has state transition(s) that 

sets each state variable to its initial value and schedules at least one other Event. The advantage 

of this approach is that the Run Event, once placed on the Event List, is simply processed like 

any other Event, so the only special treatment is the fact that the Event List bootstraps the model 

by simply scheduling Run to occur at time 0.0. 

It should also be noted that there will be an additional step in processing simulation 

Events when the ability to cancel pending Events is introduced later. Thus, Figure 1-3 and the 
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elaboration in this section should be seen as a basic template that will be expanded on 

subsequently. 

1.4. Future Event List 

The Future Event List (FEL), or simply Event List for short, is the mechanism by which 

pending Events are held and managed. The FEL is responsible for holding information about 

every pending event and keeping them in order.  More precisely, the FEL just needs to be able to 

identify the pending event with the earliest scheduled time. The contents of the FEL are 

sometimes called Event Notices, and they contain all the information necessary to process the 

Event.  At the minimum, each Event Notice must contain an identifier for which Event to which 

it corresponds and the scheduled time for that occurrence of the Event (so the FEL can keep the 

Event Notices sorted). 

The Event List also needs to be able to add Events while maintaining time-sorted order 

and remove the next scheduled pending Event Notice.  If canceling of Events is supported, it also 

needs to be able to find and remove the Event Notice corresponding to the cancelled Event. 

These are of course minimal requirements for an Event List.  In order to give effective 

support for model development, it should also be able to run “verbosely” – that is, to print out 

each step it is taking in the algorithm of Figure 1-3. 

For example, one very useful tool for verifying a DES model is for the Event List to print 

each Event as it is being processed together with the current value of simulation time and the list 

of pending Events. This capability is provided by the Simkit library, discussed in Chapter 9.  

1.5. Simulation Parameters 

So far, the only variables in a DES have been state variables.  Recall that state variables 

are quantities that describe a portion of the system being modeled and that they have the 

possibility of changing value throughout a simulation run, resulting in a state trajectory. 

A second type of variable is important, namely values that do not change during a 

simulation run.  These are termed Simulation Parameters (or when there is no possibility of 

misunderstanding, simply Parameters). 

An example of a simulation parameter might be the number of servers in a queueing 

system being modeled.  Another might be the number of machines in a machine shop.  Still 

another might be the maximum speed a vehicle can travel. 

Often modeling sequences of random variables are utilized in a DES model; indeed, it is 

precisely the need to incorporate randomness that leads an analyst to utilize DES rather than an 

analytic technique.  For purposes of specifying DES models, it is convenient to be as flexible as 

possible in defining such random sequences. Thus, such a sequence will typically be defined to 

be a “simulation parameter” even though it is actually a sequence. The “parameter” should be 

thought of as the specification of the sequence. Thus, a model might identify a sequence of 

random variables, and this sequence would be a parameter. When the model is actually executed, 

of course, the sequence must be specified, just as for the number of servers parameter the actual 

value must be given at run time. Also, when a DES model is specified using such a sequence as a 
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parameter, then whenever the sequence variable appears in the model description, it is meant that 

the next random number in the sequence is generated. 

1.6. Stopping Criteria (Terminating Conditions) 

There are several ways in which a simulation run can be terminated. As noted in Figure 

1-3, whenever the Event List is empty the simulation terminates. So, ending a simulation run can 

be simply implemented by emptying the Event List whenever a terminating condition is met. 

The simplest terminating condition is based on time: the run will end after a certain 

amount of simulation time has passed.  This is simply implemented by a special event (“Stop”) 

that doesn’t affect any state, but simply empties the Event List. 

Another terminating condition is based on how many times a particular Event has been 

executed. This condition is most effectively implemented within the Event List itself since it 

requires keeping count of the given Event and emptying the Event List when the desired count 

has been reached. 

Yet another termination condition is based on a certain state being reached; that is, a 

given state variable having a determined value. Implementing this terminating condition is most 

effectively done by the model itself: every Event that changes the value of the given state 

variable conditionally scheduling a Stop event if the desired value is reached. This can of course 

be extended to a collection of states entering a pre-determined region of the state space. The 

implementation is similarly done: every Event that changes the value of any state variable in the 

collection would conditionally schedule a Stop Event when the stopping region is entered. 

Although every execution of a simulation run must have a stopping criterion, it is 

typically be omitted from the description of the DES model itself, since it is a property of the 

way the simulation is executed rather than being an essential element of the model itself. 

1.7. Defining a DES Model 

Now that all the essential elements of a DES model have been presented as well as the 

execution of the Next Event processing, defining a DES model can be summarized by specifying 

four elements: 

1. Define the parameters of the model (the variables that will not change during a single run). 

2. Define the state variables of the model (the variables that will change in piecewise constant 

state trajectories) and for each state variable specify its initial value. 

3. Define each Event by specifying its state transition and assigning a unique name to the Event. 

4. Define the scheduling relationships between Events.  For each Event that could schedule 

another, give the condition under which it will be scheduled and the amount of time in the 

future (“delay”) the Event will be scheduled to occur. 

Some simple examples will illustrate this design process. 
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2. Examples 

Two simple examples of DES models will now be presented: The Arrival Process and the 

Multiple Server Queue. 

2.1.1. Arrival Process 

The simplest non-trivial example of a DES has one parameter, one state variable, and one 

Event (besides the Run Event).  It models a single Event that recurs periodically, where the times 

between occurrences of the Event are possibly random. 

1. Parameter  

• {tA} is the sequence of (possibly random) times between the occurrences of the Event. 

2. State 

• N is the number of times the Event has occurred.  Its initial value is 0. 

3. Events:  

• Run will set N to its initial value of 0 

• Arrival will be the name of the Event, and its state transition will be to increment the 

value of N by 1.  More precisely, the state transition function is defined by: N = N + 1. 

4. Scheduling:  

• When the Run Event occurs, it schedules the first Arrival Event to occur at tA time units. 

• When an Arrival Event occurs, it schedules another Arrival Event to occur at tA time units 

in the future, where tA is the next value in the sequence {tA}. 

2.1.2. Multiple Server Queue 

Customers arrive to a service facility one at a time.  There are a limited number of servers 

at the facility, and they can only serve one customer at a time.  An arriving customer who finds 

all servers are busy must wait in a line (queue) in the order of arrival.  That is, the queue is first-

come first-served. The simplest version of a DES model that captures such a facility defines its 

states only in terms of counts rather than individual customers. Later we will encounter another 

model of this situation in which the individual customers are explicitly represented. 

1. Parameters:  

• k is the total number of servers in the system 

• {tA} is the sequence of (possibly random) times between the arrival of customers to the 

system. 

• {tS} is the sequence of (possibly random) service times for each successive customer. 

2. States:  

• Q is the number of customers in the queue; the initial value is 0. 

• S is the total number of available servers (between 0 and k).  The initial value is k. 

3. Events:  

• Run will set Q to its initial value of 0 and S is its initial value of k. 

• Arrival increments the value of Q by 1: {Q = Q + 1} 
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• StartService decrements Q by 1 and S by 1: {Q = Q -1; S = S -1}. 

• EndService increments S by 1: {S = S + 1}. 

4. Scheduling:  

• Run schedules the first Arrival Event to occur at time tA. 

• Arrival schedules another Arrival Event to occur at tA  time units in the future.  If there is 

an available server (S > 0) then a StartService is scheduled with a delay of 0.0  

• StartService schedules an EndService with a delay of tS  time units. 

• When EndService occurs, if there is at least one customer in the queue (Q > 0) then a 

StartService is scheduled with delay of 0.0. 

Note that the description of Events and Scheduling (Steps 3 and 4) tend to be somewhat 

verbose when compared to the underlying model being described.  This verbosity will be 

ameliorated when Event Graphs are introduced in Chapter 3. 

2.2. Running a Simulation by Hand 

In order to illustrate the working of the Event List, let’s run a simple model “by hand.” 

That is, we will “be” the Event List. 

A single-server queue (that is, a multiple-server queue with k = 1) has interarrival times 

of {5.6, 2.9, 5.7} (these are the first few values of At ) and service times of {4.7, 2.4} (these are 

the first few values of St ).  Since we are interested in the number of customers in the system, an 

additional state variable L is added to the model.  At any time, the value of L is the total number 

of customers in the queue plus those in service.  Note that L can be expressed in terms of the 

variables already defined in the model by L = Q + (k - S). 

The simulation will be run until the second customer has completed service.  The current 

time and Event will be shown, together with the value of state variables and the status of the 

Event List.  Initially all simulation replications will start the same way after initialization of the 

Event List.  The current time is set to 0.0, the current event and the values of the state variables 

are undefined, and the Run event is on the Event List scheduled at time 0.0.  This is illustrated in 

Figure 1-3. 

 

Figure 2-1. Initial Status of Simulation 

Execution of the Event List algorithm is ideally performed as mechanically as possible. 

Each iteration starts by advancing time to the earliest pending Event and removing it. Next, the 

state transitions are performed, and finally any additional Events to be scheduled are put on the 

Event List.  In this case, time is “advanced” to 0.0 and the Run event is removed from the Event 

List.  Next, the values of Q and S are set to their initial values (0 and 1, respectively). The 

additional state variable L has its value computed from the new values of Q and S: L = 0 + 1 – 1 

= 0.  Finally, Run schedules Arrival after a delay of At . Since the first value in the sequence is 

Current Current

Time Event Q S L Event List

0.0 - - - - 0.0 Run
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5.6, the Event List now has an Arrival Event scheduled to occur at time 0.0 + 5.6 = 5.6.  The 

result of this step is shown in the last line of Figure 2-2. 

 

Figure 2-2. After the Run Event is Processed 

The process is now repeated. Time is advanced to 5.6 and Arrival is removed from the 

Event List.  Q is incremented by 1 to 1 and L is updated to reflect the new values. Finally, since 

there is an available server (S > 0), a StartService Event is scheduled along with the next Arrival 

Event. 

 

Figure 2-3. After Processing the First Arrival Event 

Note that both the Events scheduled by Arrival are put on the Event List. The StartService 

Event has a delay of 0.0, so its schedule time is 5.6 + 0.0 = 5.6.  The next Arrival Event has a 

delay of 2.9, so is scheduled to occur at time 5.6 + 2.9 = 8.4. Note that because all scheduling 

does is place an Event on the Event List, the order in which Events are actually scheduled for 

any given Event is irrelevant. The important value is when the Event is scheduled to occur. The 

Event List keeps the Events sorted in order of scheduled time, so the timing of their scheduling is 

unimportant. 

Continuing in a similar manner, the final sequence of the hand simulation is shown in 

Figure 2-4. 

Current Current

Time Event Q S L Event List

0.0 - - - - 0.0 Run

0.0 Run 0 1 0 5.6 Arrival

Current Current

Time Event Q S L Event List

0.0 - - - - 0.0 Run

0.0 Run 0 1 0 5.6 Arrival

5.6 Arrival 1 1 1 5.6 StartService

8.5 Arrival
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Figure 2-4. Complete Hand Simulation 

The Arrival at time 8.5 does not schedule a StartService Event because S = 0; that is, 

there is not an available server.  However, the next Arrival event is scheduled.  The EndService 

Event at time 10.3 schedules a StartService at time 10.3 because Q > 0 (i.e., there is a customer 

waiting in the queue).  However, the EndService Event at time 12.7 does not schedule 

StartService because Q = 0 (i.e., there are no customers in the queue). 

It is a useful exercise for the reader to work out the sequence from Figure 2-3 to Figure 

2-4. 

2.3. Gathering Statistics 

The primary purpose of a DES simulation model is to learn something about the system 

being modeled that wasn’t known previously. In order to accomplish this, statistics must be 

gathered from running the simulation. A complete discussion of statistical analysis of simulation 

models is beyond the scope of this document. However, it is important to create DES models 

with an eye towards the analysis that will ultimately performed on them. 

There are several important types of statistics commonly used in analyzing DES models: 

counts and rates, tally averages, and time averages. We will illustrate each of these using the 

small example from the previous section. 

Current Current

Time Event Q S L Event List

0.0 - - - - 0.0 Run

0.0 Run 0 1 0 5.6 Arrival

5.6 Arrival 1 1 1 5.6 StartService

8.5 Arrival

5.6 StartService 0 0 1 8.5 Arrival

10.3 EndService

8.5 Arrival 1 0 2 10.3 EndService

14.2 Arrival

10.3 EndService 1 1 1 10.3 StartService

14.2 Arrival

10.3 StartService 0 0 1 12.7 EndService

14.2 Arrival

12.7 EndService 0 1 0 14.2 Arrival
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A count is simply the number of times something has occurred. In the queueing example 

of the previous section, at time 12.7 (the ending time of the simulation) there have been 2 

arrivals. Counts can be used to estimate rates by dividing by simulation time. In this small 

example, since there have been 2 arrivals at time 12.7, the average arrival rate of customers to 

the system is 2/12.7 ≈ 0.16. 

A tally average is the average of a number of discrete observations. In our example, let’s 

focus on the average time in the system. The data in Table 2-1 show the time each customer 

arrived and departed; the difference between the two is the time the respective customer spent in 

the system. 

Customer Arrived Departed Time in System 

1 5.6 10.3 4.7 

2 8.5 12.7 4.2 

Table 2-1. Data for Customers’ Time in System 

For this small amount of data, our estimate of the average time in the system would be 

(4.7 + 4.2)/2 = 4.45.  Obviously no solid conclusions can be made based on so few observations, 

and this computation is shown for illustrative purposes only. There are additional issues, namely 

that the data from a DES model typically do not meet many of the “standard” statistical 

assumptions. For example, the two times in the system here are neither independent nor are they 

identically distributed. These, and other issues, will be dealt with when output analysis is 

covered. 

The third type of statistic, the time-average, is computed differently than a tally average. 

A time average is computed by first finding the area under the state trajectory and dividing it by 

the simulation time. Time averages are common in DES models because of the nature of DES 

state variables.   

Let’s compute the average number of customers in the system for the queueing example 

of the previous section. A graph of the state trajectory for the number in the system in the 

queueing example is shown in Figure 2-5. From the graph, it should be clear that the “normal” 

way of computing the average would not be appropriate because it doesn’t take into account the 

amount of time spent in each state. 
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Figure 2-5. State Trajectory for Number of Customers in System (L) 

There are several ways to compute the area under the curve. The most convenient way in 

a DES model is to keep a running total and update it every time the state changes value. This is 

illustrated in Table 2-2 below. 

Time L Area Under Curve 

0.0 0 0.0 

5.6 1 0.0 + 0 (5.6 – 0.0) =0.0 

8.5 2 0.0 + 1(8.5 – 5.6) = 2.9 

10.3 1 2.9 + 2(10.3 – 8.5) = 6.5 

12.7 0 6.5 + 1(12.7 – 10.3) = 8.9 

Table 2-2. Computing the Area under the Curve for L 

The area is 0.0 at time 0.0, so the initial value always starts there when computing a time-

varying average. At time 5.6 the value of L changes to 1, but the area is still 0.0 because it had 

been 0.0 since the previous time of 0.0. At time 8.5 L changes again to 2, and this time the area is 

2.9 since L has been 1 from time 5.6 to 8.5. At time 10.3 the area is incremented by 2.6, etc.  

When the simulation ends at time 12.7, the area under the state trajectory for L is 8.9. Therefore, 

the average number in the system at time 12.7 is 8.9/12.7 ≈ 0.54. 

Time-varying averages play an important role in many DES models, so the reader should 

become comfortable with this concept. 

As with the average time in the system, there is obviously insufficient data to draw any 

reasonable conclusions about the system. In fact, the amount of data that can be obtained from 

running a simulation by hand this way will never be sufficient for analysis. That is why 

implementation and execution on the computer is so important. 
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An important time varying average is used as a measure of server performance in many 

queueing systems, namely the average amount of time a server is busy. This average is called 

utilization.  The server utilization for this small example can be determined by first computing 

the time average number of available servers.  The state trajectory for S is shown in Figure 2-6. 

 

Figure 2-6. State Trajectory for Number of Available Servers (S) 

The area under the graph is easily found to be 5.6, so the time varying average of S at the 

end of the run is 5.6/12.7 ≈ 0.44.  Since the number of busy servers at any given time is k – S, the 

average utilization is therefore 1 – 0.44 ≈ 0.56. 

2.3.1. Definitions 

To summarize the different statistics discussed above, let us give more formal definitions 

for each of them. 

1. Count.  Simply the number of times something has occurred.  Often this can be determined 

by observing a state variable, such as the number of arrivals, N, in the ArrivalProcess model 

described previously. 

2. Average Rate.  A count divided by simulation time.  If N is a count and T the value of 

simulation time, then the estimate of the average rate of occurrence is TN /= . 

3. Tally Average.  The observations are discrete, and the tally average is simply the “standard” 

mean.  If nXX ,,1  are the observations, then the tally average is simply 
=

=
n

i

iX
n

X
1

1
 

4. Time-Varying Average.  The observations form a state trajectory; that is, there are no 

discrete observations, just the values of the state it changes over time.  If )(tX is the value of 

the state at time t, then the time varying average at simulation time T is given by 

=
T

dttX
T

TX
0

)(
1

)( . 

Note that this definition of a time average holds even if )(tX  is not a DES state trajectory.  

That is, regardless of the form of )(tX , the time average is given by the above integral.  For 

complex curves it can be difficult to find the value and approximate methods must be used.  
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Fortunately, since DES state trajectories are piecewise constant, the only “calculus” needed is 

the ability to compute the area of a rectangle. 

5. Average Utilization.  For a queueing system with k identical servers and the number of 

available servers at time t given by S(t), the average utilization is −
T

dttS
kT 0

)(
1

1 . 

2.3.2. Little’s Formula 

In computing the tally average time in system and time varying average number in 

system above, it may be observed that the former required much more knowledge about the 

simulation run than the latter. That is, to find the time each customer spent in the system it had to 

be “remembered” when each one first entered. In contrast, the average number in the system 

only required knowledge of the current state and the running total area. A consequence of this is 

that this particular DES model for the queueing system is not capable of directly estimating the 

average customer time in the system. This would seem to be a serious flaw in the model; 

however, there is a result called Little’s formula that obviates the need for directly computing the 

average time in the system. 

In this context, Little’s formula can be stated as follows. Consider a “system” in which 

entities arrive, enter, stay awhile, and then leave (Note that the “system” need not necessary be a 

queueing system).  Let L  be the average number of these entities in the “system” at a given time 

T, let W  be the average time in the system for those entities, and let   be the average arrival 

rate of the entities to the system.  Little’s formula is: WL = . 

There are times when Little’s formula holds exactly, times when Little’s formula holds 

approximately, and times when Little’s formula doesn’t hold at all.  It turns out that whenever 

the “system” is empty, then Little’s formula holds exactly.  This means that for these times, the 

value of W  can be found as /LW = . 

For a system that achieves some kind of “steady state” (which shall be left somewhat 

vague for now), Little’s formula can be shown to hold approximately. For systems that do not 

reach any kind of steady-state equilibrium, Little’s formula cannot be said to hold in general or 

even approximately (but even for these systems, whenever they are empty Little’s Formula does 

hold nevertheless). Finally, during the transient (early) period of a simulation when the system is 

not empty, Little’s Formula has little to offer. Fortunately, neither of these instances is typically 

of interest. 

Let’s verify Little’s formula in our small example.  Recall that (using the notation in this 

section) we had: 7.12/9.8=L , 2/9.8=W , and 7.12/2= , so LW ==















=

7.12

9.8

2

9.8

7.12

2
 .  

Note that the computations were done exactly, so the Little’s formula does indeed hold exactly at 

time 12.7, since the system is empty at that time. 

The word “system” was put in quotes because it applies to any sub-system as well. For 

example, the queue in our example can be considered a “system” and Little’s formula holds for it 

as well, under the same circumstances. In this case, when there are no customers in the queue, it 

holds exactly. The reader should be able to easily show that the average number in the queue at 
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time 12.7 is 1.8/12.7 and that the average delay in the queue is 1.8/2 = 0.9. The average arrival 

rate to the queue is identical to that of the system. 

Note that at time 12.0 Little’s formula for the overall system does not hold, but Little’s 

formula for the queue does hold (why?). 

2.4. Next Steps 

Sufficient material has now been presented to create DES models.  However, the 

language for describing Events and scheduling relationships is wordy and can be unintuitive.  

The next step is to introduce a compact and intuitive representation of a DES model.  This 

representation is called an Event Graph.
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3. Basic Event Graph Modeling 

The description of scheduling Events in the basic Discrete Event Simulation (DES) 

framework indicates a directed, binary relationship between the Event that is being “processed” 

and an Event that is scheduled. This suggests a way to represent this activity using a graph, 

called, appropriately, an Event Graph. Event Graphs were introduced by Schruben (1983) and 

have proved to be an effective, simple, yet powerful way of designing DES models. 

An Event Graph consists of nodes and directed edges. Each node corresponds to an 

Event, or state transition, and each edge corresponds to the scheduling of other events.  Each 

edge can optionally have an associated Boolean condition and/or a time delay. Figure 3-1 shows 

the fundamental construct for Event Graphs and is interpreted as follows: the occurrence of 

Event A causes Event B to be scheduled after a time delay of t, providing condition (i) is true 

(Note: the Boolean condition (i) is evaluated after the state transitions for Event A have been 

performed).  By convention, the time delay t is indicated toward the tail of the scheduling edge 

and the edge condition is shown just above the wavy line through the middle of the edge. If there 

is no time delay, then t is omitted. Similarly, if Event B is always scheduled following the 

occurrence of Event B, then the edge condition is omitted, and the edge is called an 

unconditional edge. Thus, the basic Event Graph paradigm contains only two elements: the event 

node and the scheduling edge with two options on the edges (time delay and edge condition). 

 

Figure 3-1. Fundamental Event Graph Construct 

An Event Graph makes the relationships between Events clear and intuitive. A complete 

Event Graph model consists of the parameters and state variables, as with a “vanilla” DES 

model, plus the Event Graph itself, which defines the Events with their state transitions and the 

scheduling relationships defined by the edges of the graph. 

3.1. Simple Examples 

Let’s formulate the two simple models described previously as Event Graph models. 

3.2. The ArrivalProcess 

Parameter 

• {tA} is the sequence of (possibly random) times between the occurrences of the 

Event. 

State Variable 

• N is the number of times the Event has occurred.  Its initial value is 0. 

A B
t

(i)
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Event Graph: 

 

Figure 3-2. ArrivalProcess Event Graph 

For simple Event Graphs like this one, it is convenient to put the state transitions beneath 

the Event nodes.  For larger models this may make the graph more cluttered and less intuitive, 

and so may be defined separately. If the parameter given by the sequence of interarrival times 

   

{tA} is random, then the appearance of At  in Figure 3-2 is interpreted to mean that a new value 

is obtained from the sequence {tA}every time it is encountered.  If {tA} is obtained from a 

random variate generator, then the “new value” is simply the next generated value. If {tA} is a 

pre-defined sequence of values (such as obtained from historical data), then the “new value” is 

the next in the sequence. 

Note that the Event scheduling relationships in Figure 3-2 make it quite clear which 

Events cause others to occur: that Run schedules the first Arrival Event and each occurrence of 

Arrival schedules the next occurrence of Arrival. 

Also, the Event Graph in Figure 3-2 only depicts the dynamic relationship between 

events; no terminating condition is specified. 

3.3. The Multiple Server Queue 

Parameters: 

• k is the total number of servers in the system (k > 0) 

• {tA} is the sequence of (possibly random) times between the arrival of customers 

to the system. 

• {tS} is the sequence of (possibly random) service times of each successive 

customer. 

States:  

• Q is the number of customers in the queue; the initial value is 0. 

• S is the total number of available servers (between 0 and k).  The initial value is k. 

Run Arrival

{N = 0} {N = N + 1}

tA

tA
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Event Graph: 

 

Figure 3-3. Multiple Server Queue Event Graph 

For a slightly more complex model such as this one, the contribution of Event Graphs 

should be even more apparent than for the previous model. Compare Figure 3-3 with the verbal 

description previously. Both describe the same model, but the Event Graph is much easier to 

grasp and understand once the meaning of the nodes and edges is known. 

One caution however is to keep in mind that the nodes represent Events, and the edges 

represent scheduling relationships. Thus, when an edge is “executed,” it has the sole effect of 

placing an Event on the Event List, nothing more. When reading the Events from left to right in 

Figure 3-3 it can be tempting to interpret it as a flow chart. This should be avoided, since that is 

not what the meaning is. Again, an edge from one Event to another simply signifies that Event 

will schedule another Event when it occurs (i.e., is executed by the Event List). 

Run

{Q=0, S=k}

Arrival
Start

Service

End 

Service

{Q = Q + 1}
{Q = Q – 1,

S = S - 1}

{S = S + 1}

(S > 0)

(Q > 0)

tS
tA

tA
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4. More Event Graph Modeling Concepts 

Although the simple Event Graph methodology as presented so far can be very useful in 

designing DES models, there are two concepts that turn out to be extremely useful in creating 

simple and flexible models. These are the ability to cancel an Event after it has been scheduled 

and the ability to pass arguments on scheduling edges and have the values received by the 

scheduled event. 

4.1. Cancelling Edges 

With the basic DES methodology so far, the only way Events can be removed from the 

Event List is by becoming the next (current) event and then being processed. Although it is not 

strictly necessary, it turns out that the ability to remove an Event from the Event List, that is to 

cancel it, is very convenient for helping to create parsimonious models. The cancelling edge 

triggers the removal of a single previously scheduled Event from the Event list and is indicated 

by a dashed arrow instead of the solid arrow of a scheduling edge, as shown in Figure 4-1. It can 

have an optional Boolean expression, just as with a scheduling edge, meaning that the Event 

pointed to is cancelled only if the condition (i) evaluates to ‘true.’ 

 

Figure 4-1. Prototypical Cancelling Edge 

The interpretation of Figure 4-1 is as follows: whenever Event A occurs, then (following 

its state transition), if condition (i) is true, then the earliest scheduled occurrence of Event B is 

removed from the Event List.  If no such Event had been previously scheduled, then nothing 

happens; it is not considered an error.  If Event B had previously been scheduled multiple times, 

then only the earliest scheduled one is removed, and the remaining ones are left on the Event 

List. 

It is important to remember that the cancelling edge in Figure 4-1 has only one 

opportunity to remove Event B for any given occurrence of Event A.  If the Boolean condition (i) 

evaluates to false, then that opportunity is “lost” – the cancelling edge will not “wait” for (i) to 

become true.  Of course, a subsequent occurrence of Event A may result in condition (i) 

becoming ‘true’ again, in which case the cancellation will in fact occur.  Note that there is no 

time delay associated with a cancelling edge. If there is a desire to cancel an Event after a certain 

delay, then the modeler can first schedule one event with that delay, and when that Event occurs, 

the desired Event is cancelled. 

For example, suppose Event B is scheduled by Event A with a delay of t1 time units, and 

the modeler wishes to cancel Event B after t2 time units, if Event B has not already occurred. 

This is accomplished by creating an Event C, which schedules Event D with a delay of t2. In 

turn, Event D cancels Event B, as shown in Figure 4-2 

A B

(i)
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Figure 4-2. Cancelling with Delay 

It is also important to note that a cancelling edge only cancels one event (at most). In 

order to cancel multiple occurrences of an event, an Event Graph version of a “for’ loop must be 

utilized (See Section 4.4.1). 

4.2. Parameters on Events and Arguments on Edges 

Another feature that is not strictly necessary but one that makes models more simple and 

extensible is that of passing arguments on scheduling edges. In order for this to make any kind of 

semantic sense, the Event being scheduled in such a case must have formal parameters for each 

argument being passed. Conversely, it is often useful for data to be passed to an Event, much like 

an argument being passed to a function or a method in computer programming. For the Event to 

have the appropriate data to work with, it must be passed.  Since the scheduling edge is the 

mechanism by which an Event is “created,” it is natural to insist that the data be passed on the 

scheduling edge. 

This raises an issue about cancelling such Events. Event Graph methodology states that to 

cancel a previously scheduled Event with parameters, the cancelling edge must contain identical 

parameters as well. 

A parameter on an Event is indicated by a list of variables in parentheses, similar to the 

syntax of parameters on a method in computer programming.  The argument on the edge is a list 

of expressions that match the Event’s parameters syntactically, just as with a strongly typed 

programming language. The prototypes for a scheduling edge with arguments and an Event with 

parameters is shown in Figure 4-3. Note that although a single parameter/argument is indicated, 

multiple values may be passed as well. 

 

Figure 4-3. Scheduling Edge with Arguments and Events with Parameters 

The interpretation of the scheduling prototype in Figure 4-3 is as follows. When Event A 

occurs, then if condition (i) is true, Event B is scheduled to occur (placed on the Event List) after 

a delay of t, and when it occurs its parameter k will be set to the value of the expression j at the 

time it had been scheduled. 

A B(k)
t

(i)

j
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Figure 4-4. Cancelling Edge with Arguments and Events with Parameters 

The cancelling prototype in Figure 4-4  is interpreted as follows: when Event A occurs, 

then if condition (i) is true, the earliest occurrence of a previously scheduled Event B whose 

parameter was passed value j is removed. If no such Events had been scheduled, nothing 

happens.  If multiple Events meet the criterion, then the earliest of them only is removed. Any 

Event B that had been scheduled but with parameter not equal to j is not considered to be a 

match. 

4.3. Priorities on Scheduling Edges 

Sometimes in extreme cases it is necessary to break ties for Events that are scheduled at 

exactly the same time. In most models for which times are continuous random variables this 

shouldn’t occur. The modeler can specify a tiebreaker for Events that might occur 

simultaneously and for which the order matters. This is done by setting a priority on the 

scheduling edge. By convention a higher numerical value means higher priority. Figure 4-5 

shows a scheduling edge with priority set to p. 

 

Figure 4-5. Scheduling Edge with Priority 

If the priority is omitted, then the “default” priority is assumed. 

In the multiple server queue Event Graph of Figure 3-3, with continuous interarrival and 

service times there will normally not be multiple Events on the Event List at identical times. 

However, if discrete random variates are used for the times, then it is possible for an Arrival 

Event and a StartService Event to be simultaneously scheduled at exactly the same time.2  If the 

value of S is 1 and the Arrival Event happens to be processed first, then it will schedule a 

StartService, with zero delay, thus having two StartService Events on the Event List.  When the 

second one is processed, the value of S will then become -1, an impossible situation. The remedy 

is to schedule StartService with higher priority than Arrival so that even when they have 

identical scheduled times, StartService always is processed first. 

 
2 Note that when Arrival schedules a StartService they may occur at the same time, but they are never on the 

Event List at the same time. 

A B(k)

(i)

j

A B
t

(i)

p
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4.4. Examples 

4.4.1. “For” Loop 

Event Graph methodology does not permit the direct use of “for” loops, a common 

construct in computer programming. However, passing arguments on edges facilitates a simple 

Event Graph snippet that implements this functionality of a “for” loop by having a given Event 

be repeatedly scheduled with zero delay. For example, suppose it is desired to have an Event 

called Init(i) occur exactly m times at time 0.0, with  i = 0,… ,m-1for the successive occurrences 

of Init. The Event Graph snippet in Figure 4-6  

 

Figure 4-6. Event Graph “For” Loop 

The reader should verify that Events Init (0), …, Init(m-1) will successively occur at time 

0.0 when this is executed.  Note that zero-based indexing is used here. This is because the most 

common simulation languages currently also use zero-based indexing for their arrays. The Event 

Graph in Figure 4-6 could be modified to use one-based indexing; that is, for the successive 

values of i to be 1,…,m.  This simple modification is left as an exercise. The transfer line model 

below will use this construct to initialize its state variables. This construct is typically used when 

initializing state variables that are arrays. Each execution of the Init(i) event initializes the ith 

element of the array. 

An example of a ‘for’ loop is when the modeler wishes to cancel multiple events is as 

follows. Suppose multiple occurrences of Event B have been scheduled (not depicted) and the 

modeler wishes to cancel all pending Event B’s on the Event List. Suppose further that there are 

at most n pending occurrences of Event B. Then a ‘for’ loop to cancel all of the pending Event B 

events is shown in Figure 4-7. 

 

Figure 4-7. Cancelling Multiple Occurrences of an Event 

Run
Init

(i)
0

i + 1

(i < m - 1)
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4.4.2. A Simple Inventory Model with Backorders 

We now present a simple, non-queueing Event Graph model that illustrates passing 

parameters on edges. 

A company is seeking to manage the inventory level for a single product. Customers 

purchasing the product arrive according to an arrival process. Each arriving customer attempts to 

purchase a random number of items, D. The inventory level at the company is reviewed 

periodically and a decision is made whether or not to place an order from its supplier. When the 

company places an order, it takes a certain amount of time (“lead time”) for the order to arrive.  

Due to a variety of circumstances, the lead times are random. The company uses a <s,S> (“little s 

big S”) policy for its ordering decisions. If the inventory position at review time is below s, then 

an order is placed that is the difference between it and the number S. The inventory position 

includes the amount of the product on-hand and the amount of the product that is on-order (that 

is, has been ordered from the supplier but not yet received). Note that it is possible for there to be 

two or more outstanding orders from the supplier. 

When a customer’s order cannot be filled, the unfilled portion is put on backorder. When 

the company receives a shipment from its supplier, backorders are immediately filled, and the 

remainder put in stock. For example, if there are 5 items in stock and a customer wants to buy 8 

items, the customer is given the five items in stock and the remaining three are backordered. 

Measures include the average amount of inventory on-hand, the average amount on 

backorder, and the average amount on-order, and the percentage of customers who get their 

orders filled immediately.  The values of s and S are policy variables that can be chosen by the 

manager, who presumably wants to pick the “best” ones. 

Parameters 

• }{ At  = times between arrival of customers 

• {D} = number if items demanded by a customer 

• }{ Lt = lead time for orders received by company 

• Rt = time between reviews.  Note that this is will typically be deterministic, so it 

is not shown as a sequence  

• I0 = initial inventory 

• S = order-up-to amount 

• s = trigger amount 

States 

• I = amount on-hand; initially I0 

• B = amount on backorder (i.e. owed to customers); initially 0 

• T = total amount on-order (i.e. to be received); initially 0 

• N = number items ordered ; initially 0 

• NO = number orders placed; initially 0 
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Event Graph 

 

Figure 4-8. Event Graph for Inventory Model 

Note that the only effect of a Demand is to update the net inventory position and then the 

two state variables, I (amount on hand) and B (amount backordered). Also, PlaceOrder is 

scheduled from Review with the condition (I – B + T < s). The expression I – B + T is the 

amount on-hand net the amount on backorder (owed to customers) and the amount on-order 

(owed to the facility).  If T were omitted from the expression and a Review occurred before an 

outstanding order had arrived, then another order would be placed, which is not desired.  The 

expression S – I + B – T has the effect of making the inventory level at that instant, net 

everything that is owed, exactly equal to S. The use of a parameter on the scheduling edge and 

on the OrderArrives(A) Event is because the order quantities will typically vary from one order to 

the next.  When an order does arrive, the amount on order (T) is decremented by the amount that 

has arrived (A), then nets out the inventory position variables in the same way as the Demand 

event. The state variables for the number of items ordered and number of orders placed are 

updated at the PlaceOrder(A) event. 

4.4.3. Transfer Line 

Another model that demonstrates the usefulness of parameters on edges is a model of a 

transfer line. Note that without parameters we would need a different model for every line of 

different length, whereas this one model can be used for a transfer line of any length. 

Jobs arrive one at a time according to an arrival process and are processed by n 

workstations in a series, each consisting of a multiple-server queue with infinite capacity. Upon 

Review
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completion of service at each workstation, a job proceeds to the next workstations and departs 

the system when service at the last workstation is complete. 

Parameters 

• }{ At  = times between arrival of jobs 

• n = # workstations 

• ik = # machines at workstation i 1,,0 −= ni   

• }{
iSt = service time at workstation i 1,,0 −= ni   

States 

• iQ = # in queue at workstation i 1,,0 −= ni   

• iS = # available machines at workstation i 1,,0 −= ni   

Event Graph 

 

Figure 4-9. Transfer Line Event Graph 
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Note how the “for” loop is used to initialize iQ and iS . In general, whenever there are 

state variables that are arrays, a similar construct must be used to initialize their values. Notice 

also how the basic structure of the model is very similar to the multiple server queue model 

above. By creating the model in this manner, with the number of workstations given as a 

parameter, the same model structure can be used regardless of the number of workstations in the 

system.  

4.4.4. Multiple Server Queue with Impatient Customers 

This model illustrates the use of a cancelling edge as well as passing arguments on edges.  

Consider a queueing system like the multiple server queue in which customers are “impatient” 

and will exit the queue if they are not served within a certain amount of time. A customer who 

joins a queue and subsequently leaves is said to have “reneged.” Each customer’s impatience 

time is from a given probability distribution. Additional measures include the percentage of 

customers who renege. 

A simple approach to modeling this situation is to add state variables, on that counts the 

total number of arriving customers (N) and one that counts the number who have reneged.  An 

event is needed that corresponds to the reneging of a customer. The state transition for a Renege 

is to decrement the number in the queue and increment the number of reneges that have 

occurred. 

This model also illustrates using a “container” for holding values. In this case, a FIFO 

(First-In, First-Out) queue of customer id numbers. 

Parameters 

• k is the total number of servers in the system 

• {t
A
}is the sequence of (possibly random) times between the arrival of customers 

to the system. 

• }{ St = the sequence of (possibly random) service times of each successive 

customer. 

• }{ Rt = the sequence of (possibly random) renege times  

States 

• q = FIFO container of (unique) customer id’s (initial value = empty). 

• S = the total number of available servers (between 0 and k).  The initial value is k. 

• N = the total number of customers who have arrived at the system (initially 0) 

• R = the total number of customers who have reneged (initially 0). 

• M = the total number of customers who have received service (initially 0) 
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Event Graph 

 

Figure 4-10. Multiple Server Queue with Customers who Renege 

As shown by the Event Graph in Figure 4-10, an arriving customer schedules the Renege 

event upon arrival, so that whenever it occurs, the queue is decremented. If the StartService 

event occurs first, however, then the Renege event that corresponds to that customer is removed. 

Note that the expression M + R that is on the cancelling edge from StartService to Renege gives 

the number of the customer who has just started service. 

The state variables M, R, and N can be used to compute the proportion of customers who 

renege (R/N) and the proportion of customers who receive service (M/N). The time-varying 

averages of S and Q can be used to estimate the average number in the queue and the average 

utilization of the servers. 

Note that Little’s formula cannot be applied in this situation to estimate the delays in 

queue or the time in the system for customers who received service. This is because the queue 

count includes all customers and can’t distinguish (before a Renege occurs) between those who 

will eventually renege and those who will receive service. Applying Little’s formula would 

require two state variables, one for served customers and one for reneging customers. Since this 

cannot be done until after the fact, a model that explicitly computes these times is needed (see 

Section 4.5.2). 

4.5. Containers 

For certain situations it is convenient to model using containers to hold data, as the 

previous model illustrated. In Event Graph models a container can be thought of as a state 

variable with “values” that go beyond simple numerical variables. 
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4.5.1. Multiple Server Queue with Explicit Tally of Times in Queue and System 

Suppose we wish to explicitly tally the delay in the queue and the time in the system for 

the multiple server queue model described above. As noted, this cannot be done explicitly by the 

previous model (although Little’s formula can be used, as also discussed). 

Instead of only keeping track of the number of customers in the queue, a FIFO (first-in 

first-out) container can be used to keep track of the respective arrival times of the customers. A 

global variable, which we will call simTime, is maintained by the Event List, as described 

earlier. The value of simTime when an Arrival Event occurs is the time when the corresponding 

customer arrived at the system, and the value of simTime when StartService occurs is the time 

when a customer started service. If the value of simTime when the corresponding customer 

arrived were known, the delay in queue could simply be computed by the difference. Similarly, 

the difference between the simTime when EndService occurs and when the corresponding Arrival 

occurred is the time in the system. We now define the model as follows. 

Parameters 

• k is the total number of servers in the system 

• {t
A
}is the sequence of (possibly random) times between the arrival of customers 

to the system. 

• }{ St is the sequence of (possibly random) service times of each successive 

customer. 

States 

• q is a fifo container holding the arrival times of each respective customer in the 

queue. Initially it is empty. 

• S is the total number of available servers (between 0 and k).  The initial value is k 

• D = delay in queue for the last customer (initially undefined) 

• W = time in the system for the last customer (initially undefined). 

Event Graph 

 

Figure 4-11. Multiple Server Queue with Explicit Tally 

Note that two mechanisms are available for “remembering” the simTime of arriving 

customers: storing in a container and passing as an argument. Both are used in the model, as 

shown in Figure 4-11. 
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For the two state variables D and W, note that they are simply assigned values. Statistics 

for these variables will be collected in a tally manner, unlike S that is a time-varying variable.  

Note also that their initial values are ‘NaN’ which stands for “Not a Number.” This is because at 

the start of the simulation there is no “last” customer of either type. As the simulation is running, 

there may be more observations of D at any given point in time than of W. 

To estimate the average number in queue for this model it is necessary to collect a time-

average on the number of items in q rather than the value itself, as in the basic model. 

4.5.2. Multiple Server Queue with Impatient Customers – Explicit Tally of Delay in 

Queue and Time in System 

In the queueing model with impatient customers, it was not possible to estimate the 

average delay in queue and average time in the system. One way to do this is to save the 

simTime in the container representing the queue instead of the index of the customers and to also 

pass that value to the Renege event. StartService will remove the first element from the 

container, which is the time that customer arrived. The corresponding Renege event for that time 

will be cancelled and the delay in queue calculated. The removed value will be passed to the 

EndService event for computing the time in the system. The Renege event itself will remove the 

corresponding time from the queue and compute the delay in queue for that customer. Thus, it 

will be possible to separately estimate the average delay in queue for customers who received 

service and for those who eventually reneged. 

Parameters 

• k is the total number of servers in the system 

• is the sequence of (possibly random) times between the arrival of customers to the 

system. 

• }{ St is the sequence of (possibly random) service times of each successive 

customer. 

• }{ Rt is the sequence of (possibly random) renege times  

States 

• q is fifo container of the arrival times; initially it is empty. 

• S is the total number of available servers (between 0 and k).  The initial value is k. 

• N is the total number of customers who have arrived to the system (initially 0) 

• R is the total number of customers who have reneged (initially 0). 

•  W is the time in the system for customers who are served (initially NaN) 

• SD is the delay in queue for customers who are served (initially NaN) 

• RD is the delay in queue for customers who are served (initially NaN) 
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Event Graph 

 

Figure 4-12. Multiple Server Queue with Customers who Renege. 

As with the previous model with impatient customers, the proportion of customers who 

renege can be computed as R/N. This illustrates the fact that there is often no single “correct” 

model of a situation. Rather, there are often different models that capture the same 

characteristics. 

For situations like this, the model can be made even “cleaner” with the use of transient 

Entity objects. These will be discussed in Chapter 7. 

4.6. The Next Step 

Event Graphs are an intuitive and powerful way to conceptualize DES models as well as 

a methodology for creating them. As models become more complex, the number of Events 

increases, and with it the number of nodes that are in the corresponding Event Graph. At some 

point, the number of Events can become so large that the advantages of Event Graphs begin to 

diminish. In other words, there is a limit in the size of models that Event Graphs can continue to 

be an effective modeling tool. Although it is quite possible to build large models using only the 

Event Graph concepts that have been presented so far, it turns out that there is a way to use Event 

Graph methodology to create modular simulation components. Each component can be small and 

manageable, and these components can be connected to build much larger-scale models. 

Thus, everything that has been presented so far can be utilized in a simulation component 

framework that is flexible, extensible, and scalable

Arrival
Start

Service

End

Service

(r)

Renege

(r)

tS

(S > 0)

(q.size() > 0)
{N = N + 1,

q.add(simTime)} {S = S - 1,

  r = q.removeFirst(),

DS = simTime - r}

{R = R + 1,

q.remove(r),

DR = simTime - r

{S = S + 1,

W = simTime - r}

Run

{q.clear(), 

S=k,

R=0,

N=0,

DS =NaN,

DR =NaN,

W = NaN}

At

At

Rt

simTime

r



5-1 

5. Event Graph Components 

Event Graph methodology as described in the previous section is an intuitive and 

effective way to design Discrete Event Simulation (DES) models. However, as noted previously, 

if the entire model consists of a single Event Graph, large models – those with many Events - 

become difficult to understand and maintain. 

One way that has been found to mitigate this problem is by defining Event Graph 

components. An Event Graph component is simply an Event Graph “in miniature” – that is, an 

object that has its own parameters, state variables, and Events. An Event Graph component is 

solely responsible for maintaining its own state variables and is not at all responsible for the 

maintenance of any other component’s state variables. 

5.1. Event Graph Components 

An Event Graph component is simply a component whose description is given by an 

Event Graph model. The description is a template for instances of the component, much like a 

class is a template for an object in object-oriented programming. Thus, each Event Graph 

component encapsulates its own copies of parameters and of state variables. However, all 

components share a common Event List. 

Thus, each Event Graph component will have its own values of parameters that will stay 

fixed throughout a simulation run. Each component’s state variables will star the run at given 

initial conditions, defined by the component, and as the run unfolds, have its own state 

transitions that apply only to its state variables. Even if two components are instances of the 

same Event Graph, they may have different parameters and the values of their state variables at 

any point in time depend only on those initial conditions and the Events that have occurred in 

that component only. 

Since all components share a common Event List, the Event List needs to be able to keep 

track of which Event was scheduled by which component. However this is done, whenever an 

Event occurs, the state transition for that Event is performed by the component that scheduled the 

Event. That is, the state transition is applied to the values of the state variables in the component 

that scheduled the Event only – no other components are directly affected by the Event’s 

occurrence.   

However, for a DES model to have interesting and useful behavior, the components do 

need to have some kind of interaction.  That interaction is provided by the SimEventListener 

pattern and its relative the Adapter pattern, which we will now discuss. 

5.2. SimEventListener Pattern 

The SimEventListener pattern is the primary mechanism by which Events in one 

simulation component can affect the state of another. A key element (and advantage) of 

simulation components is the fact that only Events for that component can make changes to its 

state. Thus, the only way for an external component to effect a change in state is for it to 

somehow cause an Event to be executed. 

SimEventListening works as follows. One simulation component shows “interest” in 

another’s Events by explicitly being registered as a SimEventListener to it.  This relationship is 

shown in Figure 5-1. 
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Figure 5-1. SimEventListener Relationship: Component Listener “Hears” all of 

Component Source’s Events 

If there is a listener relationship as in Figure 5-1, then whenever an Event from Source 

occurs, then after it has executed its state transitions and scheduled Events, the Event is sent to 

Listener. If Listener has an Event that is identical (in both name and signature) to the one it 

“hears” then it processes that Event as if it had scheduled it. That is, whatever state transitions 

and scheduling are defined for the listening component are executed. The only difference is that 

the listening component does not re-dispatch heard Events to its listeners, if it has any. 

The one exception to SimEventListener is the Run Event, which is not dispatched to 

SimEventListeners when it is processed. That is because each component is expected to have its 

own Run Event that is processed once (and only once) per simulation run. Thus, there is no need 

for it to be heard by any other components, since theirs will be processed anyway. 

There is no theoretical limit to how many Listeners are connected to a given Event Graph 

component, nor is there a theoretical limit to how many Event Graph components a given one 

can listen to itself. The only limitations have to do with implementation, since each connection 

takes up space in a finite computer. Since a reasonable implementation involves very little space, 

and since computer memory is currently large and increasing, even this implementation 

constraint is not likely to be an issue. 

Because listening is the key manner in which components interact with each other, this 

has been called the “LEGO Component Framework,” where LEGO stands for Listener Event 

Graph Objects. 

5.2.1. Examples 

ArrivalProcess 

The Arrival Process Event Graph can be thought of as a component as well as a stand-

alone DES model. As a stand-alone model, it is not very interesting. However, the same pattern 

of a self-scheduling Event with a random delay has been observed in a number of DES models.  

Viewing the ArrivalProcess as a component simply means that whenever this functionality is 

needed in a model, henceforth the approach will be to instantiate an ArrivalProcess and have 

other components listen to it. 

The ArrivalProcess Event Graph as a component is shown in Figure 5-2. The only 

difference appears to be the fact that it now has a box drawn around it. 

Source Listener
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Figure 5-2. Arrival Process as Event Graph Component 

SimpleServer Component 

The model of the multiple server queue described previously is one example of where 

there was an “embedded” ArrivalProcess in an otherwise monolithic model. With 

SimEventListening at our disposal, that aspect can be removed from the model, and what is left 

is just the portion that models the server logic.  Figure 5-3 shows what the resulting Event Graph 

component looks like when this is done. 

 

 

Figure 5-3. SimpleServer Component 

Notice in Figure 5-3 that the Run event does not schedule any Events, but simply 

initializes the three state variables. This means that the SimpleServer component is not a 

complete model and cannot produce anything meaningful by itself.  It relies on some external 

Event Graph component to provide the Arrival Events that will cause its state transitions and 

other Events to be executed. 
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One way to do this is to have an ArrivalProcess that generates the Arrival events and have 

an instance of the SimpleServer component listen to it. This is shown in Figure 5-4.   

 

Figure 5-4. Multiple Server Queue with Components 

 

Tandem Queue 

To model the tandem queue in a monolithic manner requires duplicating definitions of 

state variables and Events (this is left as an exercise for the reader). A more parsimonious 

approach utilizes the fact that the primary functionality in the SimpleServer component is simply 

duplicated, and so using two instances of it should suffice. 

 

Figure 5-5. Creating a Tandem Queue with Components 
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The resulting model is shown in Figure 5-5.  Note that an additional Event Graph 

component has been inserted between the two SimpleServer instances. 

This is necessary because to have a SimpleServer component listen to another would 

cause extraneous and undesired Events to be processed in the listener.  For example, in Figure 

5-5, each StartService Event in the Station 1 SimpleServer would cause a StartService Event to 

also occur in the Station 2 SimpleServer.  Likewise, an EndService Event in Station 1 would 

cause an EndService in Station 2.3  This is highly undesirable because the start of service in the 

first station does not trigger the start of service in the second! 

The dynamics occurring in Figure 5-5 are that when an EndService Event occurs in 

Station 1, it is heard by the “Material Handler” Event Graph in Figure 5-5, because it has an 

EndService Event as well.  That in turn schedules an Arrival Event with zero delay.  When that 

Arrival Event occurs, it is then heard by Station 2, which processes it as usual. 

Although the MaterialHandler component will “hear” StartService events from Station 1, 

it will not respond to them, since it has no StartService event itself.  The MaterialHandler 

component is extremely lightweight – it has no parameters or state variables, and only serves to 

translate EndService events in Station 1 to Arrival events in Station 2. 

The general pattern is that sometimes when an event occurs in one component 

(EndService in Station 1, in this case), the modeler wishes an event of a different name to occur 

in another component (Arrival in Station 2, in this example).  Since this is a highly useful 

functionality, it is incorporated into the component framework as an Adapter Pattern, which we 

now discuss. 

5.3. Adapter Pattern 

It frequently arises that there is a desire for an Event of one name in a component to 

cause another Event of a different name to occur in another component. There was a specific 

example of this in the tandem queue of the previous section, in which the EndService Event in 

the first server component was to cause an Arrival Event in the second. In general, if a “source” 

component has an Event A and it is desired to cause Event B in a Listener component whenever 

A occurs, then an adapter between the Source and Listener is created that “adapts” Event A to 

Event B.  This is illustrated in Figure 5-6. 

 

Figure 5-6. Prototype Adapter: Event A in Source Causes Event B in Listener 

Unlike the Listener pattern, the Adapter works on a single Event only. If a component is a 

SimEventListener to another, then all of the Events that are scheduled by the source component 

are heard by the Listener when they occur (with the exception of Run, as mentioned previously).  

If the Adapter is used, then only the Event specified by the adapter is heard (as the adapted 

Event). That is, in Figure 5-6, only when Event A occurs in the Source component does the 

Listener “hear” anything. If there is a desire to hear other Events, then additional Adapters must 

 
3 However, an Arrival Event will not be heard, because it has been heard from the ArrivalProcess. 
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be created to connect the components. Note that both Events can have the same name – this 

would be the case if the Listener only wanted to hear a specific Event that it also had. 

The Source Event and the Adapted Event must have identical signatures (parameter list) 

for the Adapter to actually work. If there is a mismatch in signatures, then nothing will happen.  

For example, in Figure 5-7 Event A is adapted to Event B just as in Figure 5-6, and this is a 

perfectly legal construct. However, the Listener in Figure 5-7 will be expecting an Event that 

matches B(k), and it will hear an Event B with no parameters. Therefore, since there is no 

“match,” the Listener in this case will do nothing. 

 

Figure 5-7. Legal but Useless Adapter 

However, if instead the adapted Event does have the same signature, then it will actually 

cause the desired result.  Figure 5-8 shows an Event A(j) being scheduled in the Source 

component and being adapted to the B(k) Event in the Listener. 

 

Figure 5-8. Legal and Useful Adapter with Arguments 

Finally, although it is typically very dangerous to have two Event Graph components 

listening to each other, it is safer (and more common) to have them listen with adapters, 

especially if different Events are involved.  This is illustrated in Figure 5-9. 

 

Figure 5-9. Two Event Graph Components Listening to Each Other via Adapters 

In Figure 5-9, Event A in Component 1 is adapted to Event B in Component 2 and Event 

C in Component 2 is adapted to Event D in Component 1. As with SimEventListeners, there is 

no theoretical limit to how many Adapters can be connected between Event Graph components. 

A

B
C A B(k)
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C A(j) B(k)

i
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5.3.1. Examples 

Tandem Queue with Adapter 

Instances of the simple server model of the multiple server queue can be strung together 

using the Adapter pattern. Instead of Figure 5-5, the EndService Event in Station 1 can be 

adapted to Arrival by an Adapter, as shown in Figure 5-10. 

 

Figure 5-10. Tandem Queue Using an Adapter 

Note that the connection between the Arrival Process and Station 1 in Figure 5-10 could 

be either the Listener, as shown, or the Arrival Event in the Arrival Process could be adapted to 

the Arrival Event in Station 1. 

Transfer Line as Component 

The transfer line described previously can be modeled as a component, so that the 

manner of arrivals to the system is decoupled from an Arrival Process.  This is shown in Figure 

5-11. 

Arrival

Process
SimpleServer SimpleServer

Station 1 Station 2

EndService

Arrival
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Figure 5-11. Transfer Line Component 

As with the simple server component in Figure 5-3, the transfer line component in Figure 

5-11 is not a stand-alone model but must be connected to other component (or components) that 

will cause the Arrival(i) Event to occur.  One example of this is shown in Figure 5-12. 

 

 

Figure 5-12. Transfer Line Model Component Connected to Arrival Process 

The model in Figure 5-12 shows an Arrival Process being the source of arrivals to the 

transfer line system.  From Figure 5-11, it is the Arrival(i) Event with argument of 0 that is 

needed to be heard.  The arrival process cannot directly do this because the signature for the 

Arrival Event in the arrival process doesn’t match the Arrival(i) Event in the transfer line 

component.  This, in Figure 5-12 a third component is added to do this.  That component simply 

Run
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(i)

{S[i] = k[i],

   Q[i] = 0}

(i < n – 1)

0

i + 1
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(i)

Start

Service

(i)
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Service

(i)

tS[i]

(S[i] > 0)

(Q[i] > 0){Q[i] +=  1} {S[i] -=1,

   Q[i] -= 1}
{S[i] += 1}

i

i

i

(i < n – 1)

i + 1
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Component
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Arrival

(c)

0

JobArrival
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schedules a JobArrival(c) Event when it hears an Arrival Event and passes the number 0 as an 

argument.  The adapter connects the JobArrival(c) Event to the Arrival(i) Event in the transfer line 

component. 

Although the middle component in Figure 5-12 bears a superficial resemblance to the 

material handler component in Figure 5-5 that motivated the Adapter, the key difference is that 

the signatures of the two Events are different for the component in Figure 5-12.  Although it 

might be possible to develop a generic implementation of this capability, that is stimulating 

Events in other components when the signatures don’t match, it is not at all clear how that might 

be done.  For now, therefore, the modeler must be content with writing small adapter-like 

components like the one in Figure 5-12 when there is the need to change signatures of Events. 

5.4. Property Change Listener Pattern 

A second listener pattern is available in the LEGO framework is the Property Change 

Listener pattern. The idea is simply that whenever a state variable changes value, that 

information is dispatched in a Property Change Event. A “PropertyChangeEvent” is completely 

different than a SimEvent; for example, a PropertyChangeEvent never interacts with the Event 

List, whereas a SimEvent does. 

Special components called PropertyChangeListeners are created to listen to the 

PropertyChangeEvent that are fired by the LEGO components. These components are 

structurally considerably simpler than LEGO components.  They do not have any Events, nor do 

they interact in any way with the Event List, as already mentioned.  Their primary purpose is to 

do something in response to state transitions in certain designated LEGO components. 

A PropertyChangeListeners relationship is depicted in Figure 5-13. The connector is 

similar to that of SimEventListener, except it is depicted with a small pitchfork-like end. 

 

Figure 5-13. PropertyChangeListener 

A PropertyChangeListener as shown in Figure 5-13 will “hear” all of the state transitions 

for the SimEntity component.  The information included is the name of the property (state), the 

old value (the value of the state variable prior to the state transition) and the new value (the value 

of the state variable after the state transition).  It is expected that every state variable that changes 

fire a separate PropertyChangeEvent.  If a PropertyChangeListener is designed to only hear one 

state variable at a time (as is the case with many of the statistics listeners), it is the listener’s 

responsibility to filter out the “unwanted” PropertyChangeEvents. 

This can also be mitigated by an alternate form of the PropertyChangeListener 

connection, so that the connection itself can do the filtering. This is illustrated in Figure 5-14. 

SimEntity PropertyChangeListener
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Figure 5-14. PropertyChangeListener for Specific Property 

Here, the PropertyChangeListener component will only hear PropertyChangeEvents for the state 

variable called “aStateVariable.” 

Just as with SimEventListeners, there is no theoretical limitation on how many 

PropertyChangeListeners can listen to a given LEGO, nor is there a theoretical limitation on how 

many LEGO components a given PropertyChangeListener can listen to. 

Note that while LEGO components are both sources and listeners of SimEvents, a 

PropertyChangeListener is typically not a SimEntity. Thus, there is an asymmetry between 

sources of PropertyChangeEvents and their listeners. 

Two of the primary functions performed include a useful way of debugging and 

troubleshooting Event Graph components and collecting statistics. The first function is 

associated with a computer implementation of Event Graphs, and so is not relevant in a 

conceptual context. Two simple examples of the latter function will now be described. 

SimEntity PropertyChangeListener

aStateVariable
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6. Collecting Statistics 

As previously discussed, there are two ways that statistics are collected in Discrete Event 

Simulation models: time-varying and tally. Recall that time-varying means are computed as the 

area under the state trajectory curve divided by the time, whereas a tally mean is the sum of 

discrete values divided by the number of the values observed. Since the formulas for computing 

these are fundamentally different, two distinct PropertyChangeListener components are created.  

The idea is that these be as lightweight as possible; specifically, only a minimal amount of data is 

stored, which typically will include counters and accumulators for the sum and sum of squares. 

Tally Statistics 

A tally mean is the numerical average of a discrete collection of observations. For 

discrete observations, the variance is likewise defined, as in Figure 6-1. 
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Figure 6-1. Definition of Tally Mean and Variance for Discrete Observations 

One approach to estimate simple summary statistics for a simulation is to maintain a 

counter of the number of observations and a running sum and sum of squares.  The minimum and 

maximum observations are easily kept as well.  We will call this listener a SimpleStatsTally. It 

consists of a counter, n, which contains the number of observations as well as running values of 

the mean, variance, min, and maximum values.  Figure 6-2 shows the initialization of these 

values. 
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Figure 6-2. Initialization for SimpleStatsTally 

Now, whenever a state transition is heard, the counters are updated according to the logic 

in Figure 6-3.4 

 
4 Recall that ba is the minimum value of a and b and that ba is the maximum value of a and b. 
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Figure 6-3. Updating SimpleStatsTally Variables 

The reader may wonder why the expressions in Figure 6-3 aren’t the obvious ones (i.e., 

maintaining running sum and sum-of-squares). The reason is that the expressions for X and 
2

S in 

Figure 6-3 will tend to stay closer to their respective values, whereas the running sum, and 

especially the running sum of squares, could easily overflow the possible values on the computer 

as more and more data are collected. The reader should verify that the expressions in Figure 6-3 

yield the correct values. 

Note that since simulation data tend to be correlated, interpreting the variance by 
2

S using 

this approach should be done with great caution.  Specifically, this value should generally not be 

used when creating confidence intervals or conducting hypothesis tests. 

Time Varying Statistics 

Time varying statistics can be collected in a similar manner, by updating running values 

of the min, max, mean, and variance. Instead of the count, the time of the last state change, lastt  

as well as the running value of Δ must be stored as well. Recall that the definitions of time-

varying mean and variance are as in Figure 6-4. 
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Figure 6-4. Definitions of Time-Varying Mean and Variance 

The PropertyChangeListener that implements collecting these statistics is called 

SimpleStatsTimeVarying.  Figure 6-5 shows the initialization of the counters and accumulators 

for SimpleStatsTimeVarying. 
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Figure 6-5. Initialization of SimpleStatsTimeVarying 

Updating the values is a bit more involved, as shown in Figure 6-6.  Here simTimeX is the 

new value of the state variable after it has made its transition. For clarity, ‘T’ has been replaced 

with ‘simTime’ in the expressions to emphasize the fact that the updates are being performed at 

the current value of the simulation clock. 
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Figure 6-6. Updating SimpleStatsTimeVarying 

Note in Figure 6-6 that the order is important; Δ is updated last, so that it is this value 

which is used the next time a new observation is heard. The reader should verify that the 

expressions in Figure 6-6 will yield the correct values for the mean and variance, respectively.  

Interestingly, these equations hold even if the value of the state variable hasn’t changed. 

Other Statistics 

These two examples do not span the range of possibilities. There are many other statistics 

and approaches that can be designed to take advantage of the PropertyChangeListener pattern. 

6.1.1. Other Uses of PropertyChangeListener 

The PropertyChangeListener pattern is very useful for other things than collecting 

statistics. For example, in a computer implementation, a PropertyChangeListener that simply 

writes the property name, old value, and new value to the console is extremely useful for 

debugging.  Similarly, one that updates a graph of a state variable (or variables) and refreshed the 

window could provide a useful display of state trajectories as the simulation is running.  The 

possibilities are limited only by the modeler’s imagination. 
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However, the use of PropertyChangeListener should never be used for the actual 

functioning of an Event Graph model itself. The dynamics of the model should exclusively be 

implemented in SimEvents, and the dynamics of interaction between components done using 

SimEventListeners, whether “plain” or as Adapters.
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7. Transient Entities 

By now it can be appreciated how using simple state variables can be used to create 

powerful and effectively DES models.  Since all models are abstractions, it is not necessary to 

explicitly model each and every element of a system.  For example, the SimpleServer model of a 

multiple server queue component does not explicitly capture each and every customer passing 

through the system.  Customers are implicitly represented only through the state variables, which 

simply keep a count of how many are in the queue or in service.  Not only is this representation 

sufficient for many purposes, Little’s formula shows that certain average measures of the system 

can be indirectly obtained as well. 

However, sometimes it is useful to explicitly model individuals in the system. These 

“individuals” of course may be people but could also be non-human things such as a job or an 

order.  We have seen an element of this when simulation times were stored in a first-in first-out 

(fifo) container so the delays in queue and times in system could be explicitly observed.  In that 

model the arrival time was all that was needed for the desired functionality.  However, there are 

often situations in which a single quantity is not sufficient to represent the data about an 

individual Entity we wish to model.  For example, customers or orders may be of different 

“types” and the service times may have different probability distributions depending on their 

types.  There may be different types of jobs, each of which has a different sequence of 

workstation types required to complete it. 

To model individuals in this way, the idea of a transient entity, or simply Entity, is 

valuable.  An Entity can be thought of as an object to which certain attributes can be attached.  

Indeed, an Entity can be compared to an object in object-oriented programming, and its attributes 

to fields associated with that object. 

Since it cannot be determined beforehand what attributes a modeler requires of an Entity, 

it is important that new attributes be able to be added to an Entity at the modeler’s discretion. 

7.1. Built-In Attributes and Features 

A particular implementation of transient entities could have few or many built-in 

attributes and functions.  At a minimum there should be the ones listed in Table 7-1 below. 

Attributes Methods 

name getName() 

creationTime getCreationTime(), getAge() 

timeStamp stampTime(), getTimeStamp(), getElapsedTIme() 

Table 7-1. Attributes and Methods of the Basic Entity 

When an Entity is created, the simTime when that occurs is stored immutably.  The 

getAge() method computes the difference between the current simulation time and the Entity’s 

creation time.  The, timeStamp attribute is set by a call to stampTime(), and getElapsedTime() 

computes the difference between the current simulation time and the value of timeStamp.  Since 
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the timeStamp attribute can be changed (unlike creationTime), it can be reused and reset to 

different values throughout a simulation run. 

A simplified UML class diagram for the Entity class is shown in Figure 7-1. 

 

Figure 7-1. Entity Class Diagram 

7.2. Examples 

7.2.1. Entity Creator 

A simple way to create entities is through a small component that listens to an Event, 

instantiates (creates) the Entity and schedules another event with that Entity as the argument. 

Figure 7-2 shows the Event Graph for this pattern. 

 

Figure 7-2. Entity Creator Component 

In Figure 7-2, the Entities’ name has been set to “Customer.” 

7.2.2. Entity Server Queue Component 

The multiple server queue can be modeled using transient entities to represent the 

individual customers. A component to do that is shown by the EntityServer component in Figure 

7-3.  Note the similarity to previous models of servers. 

double getAge()
double getElapsedTime()
void stampTime()

int id
String name
double creationTime
double timeStamp

Entity

Arrival
Arrival

(c)
c

{c = new Entity(“Customer”)}
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Figure 7-3. EntityServer Component 

The calculation of delay in queue (D) and time in system (W) is simplified by the Entity’s 

ability to capture the current value of simulation time in a timeStamp and retrieve the amount of 

elapsed time with a method call (getElapsedTime()). 

The listeners for this situation would be connected as shown in Figure 7-4. 

 

Figure 7-4. Listeners for Customer Server Assembly 

Here, the Arrival event in the Arrival Process would be heard by the Customer Creator 

component, which in turn would schedule the Arrival(c) event in Customer Creator. This in turn 

would be heard by the Arrival(c) event in Customer Server component. 

7.3. Defining Additional Attributes 

Additional attributes may be added to Entities by defining them as such. For example, 

instead of having the server generate the service time, it could be generated beforehand and 

added to each arriving Entity as an attribute. To implement this, define an attribute called 

serviceTime for the Customer Entity, as shown in Table 7-1. 

Entity Attribute Type 

Customer serviceTime double 

Table 7-2. Customer Entity with serviceTime Attribute 

This Customer Entity would also include all the basic attributes described in Table 7-1, 

so the additional attributes are added to the pre-existing ones.  
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Customer Entities could be created using a modified Creator pattern, as shown in Figure 

7-5. Note that the service times }{ St would now be a parameter of this component rather than 

the server component. 

 

Figure 7-5. Customer Creator with serviceTime Attribute 

 

The corresponding server is shown in Figure 7-6. The only difference between Figure 7-6 

and Figure 7-3 is the delay on the scheduling edge from StartService to EndService. The 

listeners in the assembly would be exactly as in Figure 7-4. 

 

Figure 7-6. Customer Server for Entities with serviceTime Attribute 

In general, whatever attributes are deemed necessary may be defined to create new Entity 

types. These attributes may be of any type themselves, including other Entities. 
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Arrival

(c)
c
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8. Discrete Event Simulation Problems for Modeling 

8.1. Multiple Server Queue 

Customers arrive to a facility according to an arrival process one at a time, with 

the times between arrivals being some sequence of non-negative random variables.  

There are k servers at the facility in parallel.  An arriving customer who finds an 

available server may begin service immediately.  Service times are according to a 

sequence of non-negative random variables.  Arriving customers who find all servers are 

busy wait in a common queue for service.  When a server has completed serving a 

customer, if there are one or more customers waiting in the queue, then service begins 

immediately on the next customer.  The queue is organized as first-come first-served.  

When a customer completes service, they leave the system.  Initially the system is empty 

and all servers are idle. 

Measures to be estimated are: average number in queue, average utilization, 

average delay in queue, average time in system. 

8.2. Multiple Server Queue with Finite Waiting Room 

The same situation as in Problem 8.1 but there is a finite amount of waiting room 

in the queue, c.  An arriving customer who finds fewer than c customers already in the 

queue joins the queue.  An arriving customer finding c already in the queue leaves the 

system without joining the queue and never returns.  Initially the system is empty, and all 

servers are idle. 

In addition to measures in Problem 8.1, the percentage of lost customers is to be 

estimated. 

8.3. Multiple Server Queue with Batch Arrivals 

The same situation as Problem 8.1, except that each “arrival” contains a possibly 

random number of customers.  The system starts empty and idle.  Additional measures 

could include the average time to process a complete batch. 

8.4. Multiple Server Queue with Batch Service 

The same situation as Problem 8.1, except that service is done in batches of a 

fixed size B.  Even if a server is available, arriving customers wait until there are B 

customers in the queue to start service.  Upon completion of a batch, another batch is 

started if there are B or more customers in the queue; otherwise a server will remain idle 

until the queue reaches size B again to start another batch.  Additional measures include 

the average number in the queue and the average time in the system per customer. 
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8.5. Tandem Queue 

The same situation as in Problem 8.1, except that there are two sets of parallel 

servers in tandem.  Customers arriving to the first station are processed exactly as in 

Problem 8.1.  However instead of leaving the system upon completion of service at the 

first station, a customer proceeds to the second station.  If a server at the second station is 

available, then service starts there immediately.  If not, then that customer waits in a 

second queue.  The numbers of servers at each station can be different, as can be the 

probability distributions of service times.  Measures include the ones in Problem 8.1 for 

each station.  Initially the system is empty, and all servers are idle. 

8.6. Tandem Queue with Rework 

The same situation as Problem 8.5, except that a customer departing from the first 

station proceeds to the second station with a certain probability p, and leaves the system 

with probability 1 – p. 

8.7. Transfer Line 

This is the same situation as in Problem 8.5, except that the number of stations in 

tandem is a parameter of the model.  That is, there are n stations, each consisting of a 

multiple server queue.  Arriving jobs must be processed by an identical sequence of 

stations in turn, leaving one station to arrive at the next.  A job doesn’t depart the system 

until it has completed service at the last station.  The model should ideal be such that the 

number of stations can be specified as a parameter.  That is, the same model can represent 

any number of workstations in series.  Initially the system is empty and idle. 

8.8. Transfer Line with Blocking 

The same situation as Problem 8.7, except each station has a finite capacity.  

Customers arriving to find the first workstation’s queue at capacity will balk – exit the 

system without receiving service.  A customer who completes service at one station to 

find the following station’s queue at capacity is blocked – that is, it must remain with the 

server who is unable to serve another customer.  When a space opens in the following 

station’s queue, a blocked customer can then advance, which in turn may cause the server 

just left to begin service if customers are in their queue.  As with Problem 8.7, the model 

should be able to represent any number of workstations, and it is initially empty and idle.  

Measures include percentage of customers who balk, average number of blocked 

customers at each station, average number in queue at each station, and the percentage of 

time each station’s servers are idle, working, or blocked. 

8.9. Machine Failure Model I 

A facility has m machines, each of which fails independently according to given 

probability distribution over simulated time.  There are r repair people available to fix 

failed machines.  A machine that fails when all repair people are busy repairing machines 

waits in a fifo queue for repair.  The times to repair a failed machine are likewise from a 
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given probability distribution.  A repair person works on a machine alone until it is 

working, then immediately begins repairing another machine if one is waiting for service; 

otherwise, they become idle.  Measures include average utilization of repair people and 

average number of available machines.  Initially all repair people are idle, and all 

machines have just been “turned on.” 

8.10. Machine Failure Model II 

The same situation as Problem 8.9 except that machines also process jobs that 

arrive according to some arrival process.  An arriving job that finds no available machine 

waits in a fifo queue until a machine becomes available.  The exception is when a 

machine fails when processing a part, that part gets put back into the queue, and can be 

worked on by another machine if available.  When processing starts again, a new service 

time is drawn for the job.   Machines still fail according to simulation time.  Initially there 

are no jobs in the system.  Additional measures include the proportion of time machines 

are busy, idle, or failed and the average number of jobs in the queue. 

8.11. Machine Failure Model III 

The same situation as Problem 8.10, except that each job starts with a certain 

amount of processing time required, generated by the service time distribution.  If a 

machine fails when being processed, that job receives “credit” towards the processing 

time by the amount it has been worked on.  For example, if a job requires 5.3 hours to 

complete and is processed for 2.4 hours on a machine when it fails, then when the job 

starts again on a machine (which could be the same one or another), the processing time 

is the remaining time of 2.9 hours. 

8.12. Machine Failure Model IV 

The same situation as Problem 8.11, except that machine times to failure are a 

function of their operational time.  That is, the “time to failure” means the number of 

hours of operation a machine has until it fails. When a machine is idle, it is not failing. 

8.13. Multiple Server Queue with Reneging I 

The same situation as Problem 8.1, except that customers are “impatient” and will 

exit the queue if they are not served within a certain amount of time.  A customer who 

joins a queue and subsequently leaves is said to have “reneged.”  Each customer’s 

impatience time is from a given probability distribution.  Additional measures include the 

percentage of customers who renege. 

8.14. Multiple Server Queue with Reneging II 

The same situation as Problem 8.13, except that when a customer’s renege time 

comes, they will renege with a given probability based on their position in the queue.  For 

example, if 1,5.0,25.0 10 === ippp for 2i , then a customer whose “impatience” time 
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is up but is at the head of the queue will only renege with probability 0.25, whereas if 

they are second in line they will renege with probability 0.5, etc. 

8.15. Multiple Server Queue with Balking and Reneging 

The same situation as in Problem 8.13 (or Problem 8.14), except that customers 

also Balk – that is choose not to enter the queue – based on the number of customers in 

the queue upon arrival.  The probability a customer balks is given by some function

)(Qf , where Q = number in the queue.  One example might be )1/(1)( += QQf .  Once 

the customer has entered the queue, they may renege based on the same criteria described 

in Problem 8.13 or Problem 8.14. 

8.16. Multiple Server Queue with Two Types of Servers 

The same situation as Problem 8.1, except that there are two types of servers.  An 

arriving customer prefers one type over the other, but will receive service from the non-

preferred one if the other isn’t available.  The system starts empty and idle, and measures 

include average number in queue and average utilization for each type of server. 

8.17. Multiple Server Queue with Two Types of Customers 

The same situation as Problem 8.1, except that there are two types of customers 

who arrive according to separate arrival processes and have different service time 

distributions.  The servers “prefer” one type of customer over the other.  That is, when a 

server completes service, they will begin on the preferred type if one is waiting in the 

queue, even if it entered the system after other non-preferred customers; otherwise they 

will begin servicing the non-preferred customer.  Service times are a function of the 

customer type.  The system starts empty with the servers idle, and measures include 

average utilization and average number of each type of customer in the system. 

8.18. Multiple Server Queue with Two Type of Customers and Two 

Types of Servers 

This model combines that of Problem 8.16 and Problem 8.17.  There are two 

types of customers, say A and B, and two types of servers, say 1 and 2.  Type A 

customers prefer type 1 servers, and vice versa, whereas type B customers prefer type 2 

servers (and vice versa).  However, each will match with the non-preferred type is the 

preferred one is not available.  There are three variants for how the service times are 

modeled: 

1. Service times depend on the customer type only 

2. Service times depend on the server type only. 

3. Service times depend on both the customer type and the server type. 
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8.19. Assembly Model 

A completed part consists of 1 component of type A and 2 of type B.  Each type 

of component arrives to the facility according to independent processes.  There are k 

identical servers who assemble parts when the right mix of components is available.  The 

assembly time is a sequence of possibly random values.  An arriving component that 

finds an available server and the right number of other components can begin assembly 

immediately.  Otherwise it waits in a queue.  Initially the system is empty, and all servers 

are idle.  Measures include average utilization of the servers, production rate of the parts, 

and average number of components in each queue by type. 

8.20. Two Types of Customers with Different Server Requirements 

Two types of jobs, A and B, arrive according to independent processes to a 

service facility with k identical servers.  Jobs of type A require 1 server, while jobs of 

type B require 2 servers.  Once servers start processing a job they must stay with that job 

until it is completed.  When there is a choice, servers prefer to work on type B jobs, but 

will never be idle if there is some work to be done.  Arriving jobs wait in separate queues 

if they cannot be served.  Initially the system is empty and the servers are idle.  Measures 

include average number in each type of queue and average utilization of servers. 

8.21. Round Robin CPU Model 

Computing “jobs” from a finite population arrive to a single CPU for processing.  

The jobs are processed in a “round robin” manner instead of as in Problem 8.1.  

Unfinished jobs wait in a FIFO queue.  There is a given quantum amount that the CPU 

will spend on each job, after which if the job is still unfinished, it re-joins the queue at the 

end to await its turn.  The process of changing jobs is the “swap time” and is a given, 

fixed amount of time.  So each cycle takes  + where  is the quantum amount and 
is the swap time.  The initial job times are given by a random variable, and each cycle 

reduces the remaining processing time by .  Each job starts by waiting a random 

amount of time and then being “submitted” to the CPU.  When a job is completed, it then 

waits another random amount of time before being submitted again.  The system starts 

empty and idle, with each job beginning its wait before submission.  Measures include 

average response time (the amount of time between job submission and completion), 

CPU utilization, and average number of jobs in the queue. 

8.22. Simple Inventory Model with Backordering 

A company is seeking to manage the inventory level for a single product.  

Customers purchasing the product arrive according to an arrival process. Each arriving 

customer attempts to purchase a random number of items, D.  The inventory level at the 

company is reviewed periodically and a decision is made whether or not to place an order 

from its supplier. When the company places an order, it takes a certain amount of time 

(“lead time”) for the order to arrive.  Due to a variety of circumstances, the lead times are 

random.  The company uses a <s,S> (“little s big S”) policy for its ordering decisions.  If 

the inventory position at review time is below s, then an order is placed that is the 



8-6 

difference between it and the number S.  The inventory position includes the amount of 

the product on-hand and the amount of the product that is on-order (that is, has been 

ordered from the supplier but not yet received).  Note that it is possible for there to be 

two or more outstanding orders from the supplier. 

When a customer’s order cannot be filled, the unfilled portion is put on backorder. 

When the company receives a shipment from its supplier, backorders are immediately 

filled and the remainder put in stock. For example, if there are 5 items in stock and a 

customer wants to buy 8 items, the customer is given the five items in stock and the 

remaining three are backordered. 

Measures include the average amount of inventory on-hand, the average amount 

on backorder, and the average amount on-order, and the percentage of customers who get 

their orders filled immediately.  The values of s and S are policy variables that can be 

chosen by the manager, who presumably wants to pick the “best” ones.
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9. Event Graph Models and Simkit 

Simkit has been designed to make implementing an Event Graph model as 

straightforward as possible.  Every element in an Event Graph model has a corresponding 

element in Simkit.  This note describes some of the basic correspondences between Event 

Graph models and Simkit classes.  To implement a Simkit model, be sure that the latest 

version of Simkit is installed.  If you are using an IDE, make sure it has been configured 

so that the simkit.jar file is on the class path.  This information applies to Simkit version 

1.5.x or greater.   

9.1. Basics 

Table 9-1 below shows the relationship between the basic elements of an Event 

Graph model and the corresponding Simkit implementation. 

Event Graph Simkit 

Simulation Component Subclass of SimEntityBase 

Event Graph Parameter Private instance variable, setter and getter 

State Variable Protected instance variable, getter, no 

setter 

Event ‘do’ method 

Scheduling Edge Call to waitDelay() in scheduling 

event’s ‘do’ method 

Run Event reset() method to initialize state 

variables; 

doRun() method to fire PropertyChange 

events for time-varying state variables 

Event scheduled from Run event Call to waitDelay() in doRun() 

method 

Event scheduled from any Event Call to waitDelay() in scheduling 

event’s ‘do’ method 

Event cancelled from any Event Call to interrupt() from canceling event’s 

‘do’ method 

Priority on Scheduling Edge Priority instance as third argument to 
waitDelay() 

Argument(s) on Events Arguments in corresponding ‘do’ method 

Parameter(s) on Edges Add parameter values/expressions last (in 

correct order) in waitDelay() 

Canceling Edge Call to interrupt() 

Table 9-1. Event Graph Components and Their Simkit Counterparts 

Simkit components are implemented using Simkit by subclassing the abstract 

SimEntityBase class (in the simkit package).  Each Event Graph parameter is 

implemented by defining a private instance variable in the subclass with both a setter and 

a getter method.  Similarly, each state variable is implemented by a protected instance 

variable with a getter method but no public setter method. 
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Each Event in the Event Graph is implemented by a corresponding method in the 

subclass that starts with ‘do’ followed by the name of the Event.  So an event called 

“Foo” is implemented by a method called “doFoo”.  The one slight deviation from this 

is the Run event, which is implemented using two methods: reset() and doRun().  

The reset() method is where the state variable initializations are performed, and the 

doRun() method is where the corresponding PropertyChangeEvents are fired and other 

Events are scheduled, if there are any specified. 

Each ‘do’ method follows the same order of operations: (1) All state transitions 

are performed first; (2) Any canceling edges executed next; (3) Finally, any scheduling 

edges are executed.  Remember that a scheduling edge simply places the Event on the 

Event List, and a canceling edge only removes the next scheduled Event that matches. 

A state transition typically entails three steps:  (1) The old value of the state is 

saved in a temporary variable; (2) The new value of the state is stored in its instance 

variable; (2) A PropertyChangeEvents is fired by executing the 

firePropertyChange() method, passing the property name, the old value, and the 

new value. 

One exception to this is in doRun(), where there is no logical “old value.”   

9.1.1. Example: Primitive State Variables 

Suppose an Event Graph component has an int state variable called foo whose 

initial value is 0 and suppose the Event Bar has a state transition that increments foo by 

2.  The parts of the Simkit component class are as follows: 

. . . 

protected int foo; 

. . . 

public void reset() { 

 super.reset(); 

 foo = 0; 

} 

 

public void doRun() { 

 firePropertyChange(“foo”, getFoo()); 

} 

 

public void doFoo() { 

 int oldFoo = getFoo(); 

 foo = foo + 2; 

 firePropertyChange(“foo”, oldFoo, getFoo()); 

} 

 

public int getFoo() {  

 return foo;  

} 

 

The variable foo is first defined as a protected instance variable, given a getter 

method, and initialized to 0 in the reset() method.  The PropertyChangeEvent is fired 
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in doRun() using the 2-argument version of the firePropertyChange method.  

The state transition in doFoo() is done in the three steps described above. 

 

9.2. Scheduling Edge Options 

In addition to denoting the event that initiates the scheduling of another event (the 

event at the tail of the edge) and the event that is scheduled (the event at the head of the 

edge), every scheduling edge has four additional properties:  (1) A non-negative number, 

the time delay; (2) An optional Boolean condition; (3) Optional edge parameters; and (4) 

An optional priority. 

Some Prototypical examples follow. 

9.2.1. Simplest Scheduling Edge 

 

Simkit Code 

public void doA() { 

 // State transitions for Event A 

 waitDelay(“B”, t); 

} 

public void doB() { 

 // State transitions for Event B. 

} 

9.2.2. Scheduling Edge with Boolean Condition 

 

Simkit Code 

public void doA() { 

 // State transitions for Event A 

 if (i) { 

  waitDelay(“B”, t); 

 } 

} 

public void doB() { 

 // State transitions for Event B. 

} 

A B
t

A B
t

(i)
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9.2.3. Scheduling Edge with Priority 

 

Simkit Code 

public void doA() { 

 // State transitions for Event A 

 if (i) { 

  waitDelay(“B”, t, Priority.HIGH); 

 } 

} 

public void doB() { 

 // State transitions for Event B. 

} 

Note: This assumes that “p” is “High” priority.  Other Simkit built-in options 

include “HIGHER,” “HIGHEST,” “LOW,” “LOWER,” “LOWEST,” and “DEFAULT.”  

The user can also define custom priority levels. 

9.2.4. Scheduling Edge with Argument 

 
 

Simkit Code 

public void doA() { 

 int j = . . .; 

 // State transitions for Event A 

 if (i) { 

  waitDelay(“B”, t, j); 

 } 

} 

public void doB(int k) { 

 // State transitions for Event B. 

} 

Note: this assumes that the argument k is of type int.  In general, the 

argument(s) can be any type.  The parameter(s) can be any compatible expression. 

A B(k)
t

(i)

p

A B(k)
t

(i)

j
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9.2.5. Scheduling Edge with Argument and Priority 

 
 

Simkit Code 

public void doA() { 

 int j = . . .; 

 // State transitions for Event A 

 if (i) { 

  waitDelay(“B”, t, Priority.HIGH, j); 

 } 

} 

public void doB(int k) { 

 // State transitions for Event B. 

} 

Note: again, priority p is assumed to be “HIGH.” 

9.2.6. Scheduling Edge with Multiple Arguments 

 

Simkit Code 

public void doA() { 

 int j = . . .; 

 String x = . . .;  

 // State transitions for Event A 

 if (i) { 

  waitDelay(“B”, t, j, x); 

 } 

} 

public void doB(int k, String y) { 

 // State transitions for Event B. 

} 

Note: This assumes that k is an int and y is a String. 

9.3. Canceling Edge Options 

Similar to a scheduling edge, every canceling edge has two additional properties: 

(1) An optional Boolean condition; and (2) Optional edge parameter(s).  Canceling Edges 

do not have time delays or priorities. 

A B(k)
t

(i)

j
p

A B(k, y)
t

(i)

j, x
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9.3.1. Simplest Case 

 
 

Simkit Code 

public void doA() { 

 // State transitions for Event A 

 interrupt(“B”); 

} 

public void doB() { 

 // State transitions for Event B. 

} 

9.3.2. Canceling Edge with Boolean Condition 

 
 

Simkit Code 

public void doA() { 

 // State transitions for Event A 

 if (i) { 

  interrupt(“B”); 

 } 

} 

public void doB() { 

 // State transitions for Event B. 

} 

9.3.3. Canceling Edge with Argument 

 

Simkit Code 

public void doA() { 

 int j = . . .; 

 // State transitions for Event A 

 if (i) { 

A B

A B

(i)

A B(k)

(i)

j
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  interrupt(“B”, j); 

 } 

} 

public void doB(int k) { 

 // State transitions for Event B. 

} 

9.3.4. Canceling Edge with Multiple Arguments 

 

Simkit Code 

public void doA() { 

 int j = . . .; 

 String x = . . .; 

 // State transitions for Event A 

 if (i) { 

  interrupt(“B”, j, x); 

 } 

} 

public void doB(int k, String y) { 

 // State transitions for Event B. 

} 

 

Note:  As previously, this assumes that k is an int and y is a String. 

9.4. Random Variates in Simkit 

Streams of random variates are obtained in Simkit using instances of 

RandomVariate.  Since RandomVariate is an interface, it cannot be instantiated.  

Instead, instances of RandomVariate are obtained from the 

RandomVariateFactory class using the static method getInstance().  Many of 

the common distributions are in Simkit.  If a distribution that is not in Simkit is desired, 

then a class must be written that implements the RandomVariate interface.  Once this 

has been done, getInstance() can be used to obtain instances of the new class using 

RandomVariateFactory. 

The RandomVariate instances in Simkit can be requested by the name of the 

distribution, such as “Exponential,” “Gamma,” etc.  Consult the Simkit documentation to 

see which distributions are included. 

The convention for naming a RandomVariate class is <Name>Variate.  If 

desired, the full name may be used.  The full class name or the fully-qualified name can 

always be used.  The RandomVariate classes in Simkit are in the simkit.random 

package. 

A B(k, y)

(i)

j, x
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9.4.1. Examples 

Exponential with mean of 1.7 using shorthand: 

RandomVariate rv =   RandomVariateFactory.getInstance(“Exponential”, 

1.7); 

Obtaining this distribution using the full class name: 

RandomVariate rv = 

RandomVariateFactory.getInstance(“ExponentialVariate”, 

1.7); 

Obtaining this distribution using the fully-qualified class name: 

RandomVariate rv = RandomVariateFactory.getInstance( 

“simkit.random.ExponentialVariate”, 1.7); 

Gamma with parameters α = 1.2 and β = 2.5: 

RandomVariate rv =  

RandomVariateFactory.getInstance(“Gamma”, 1.2, 2.5); 

Constant with value 5.6 (only generates values of 5.6): 

RandomVariate rv =  

RandomVariateFactory.getInstance(“Constant”, 5.6); 

9.4.2. User-Defined Random Variate Classes 

More random variate distributions may be written by implementing the 

RandomVariate interface and its methods.  These may be obtained using 

RandomVariateFactory.getInstance() in the same manner as for the 

distributions in Simkit. The fully-qualified class name will always work.  In addition, the 

user-defined package it is in may be added to the search list with the 

RandomVariateFactory.addSearchPackage(String) method, passing in 

the name of the package.  The XXXVariate convention, if followed, will allow the 

abbreviated name as well. 

For example, suppose the class CauchyVariate is implemented in the myrng 

package.  If RandomVariateFactory.addSearchPackage(myrng) is invoked 

somewhere, then an instance may be obtained by any of the following invocations: 

RandomVariateFactory.getInstance(“Cauchy”); 

RandomVariateFactory.getInstance(“CauchyVariate”); 

RandomVariateFactory.getInstance(“myrng.CauchyVariate”); 

9.5. Event Graph Component Examples in Simkit 

This section will illustrate the mapping between Event Graph models with some 

Event Graph components that are more concrete and useful. 
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9.5.1. The Arrival Process 

The mapping between the parts of an Event Graph component and a Simkit class 

will now be illustrated with an example.  Recall the definition of the ArrivalProcess 

Event Graph component. 

The single parameter is the sequence of interarrival times }{ At .  The 

corresponding Simkit variable will be called “interarrivalTime” to make the code 

more readable.  It is defined to be a private instance variable with a setter and a getter, as 

described previously.  The connection is shown in Figure 9-1.  Note also that the 

parameter is also an argument to the constructor for the class. 

 

Figure 9-1. ArrivalProcess Parameter Defined in Simkit Component 

Similarly, the state variable N will be called “numberArrivals” and is defined to 

be a protected instance variable with a getter but no setter, as shown in Figure 9-2. 

 

Figure 9-2. Arrival Process State Defined in Simkit Component 

The Run Event is implemented as both reset() and doRun() methods, while 

the Arrival Event is defined to be the method doArrival(), as shown in Figure 9-3. 

Parameter

 is the sequence of (possibly 

random) times between the 

occurrences of the Event.

}{ At

public ArrivalProcess(RandomVariate interarrivalTime) {

    this.setInterarrivalTime(interarrivalTime);

}

private RandomVariate interarrivalTime;

. . .

public void setInterarrivalTime(RandomVariate interarrivalTime) {

    this.interarrivalTime = interarrivalTime;

}

public RandomVariate getInterarrivalTime() {

    return interarrivalTime;

}

protected int numberArrivals;

. . .

public int getNumberArrivals() {

    return numberArrivals;

}

State

N is the number of times the 

Event has occurred.  Its initial 

value is 0.
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Figure 9-3. ArrivalProcess: Defining Events in Simkit Component 

The state transition for Run has one part in reset() and another in doRun().  

The initial value is assigned in reset() and the corresponding property change is fired 

in doRun(), as shown in Figure 9-4.  The firePropertyChange() call in 

doRun() is the 2-argument type.  In contrast, the state transition for Arrival is 

completely in the doArrival() method and consists of three parts: saving the old 

value, making the state transition, and finally firing the property change with the old 

value and the new value, as seen in Figure 9-4. 

 

Figure 9-4. ArrivalProcess: State transitions in Simkit Component 

Scheduling edges are implemented by calls to waitDelay().  The arguments to 

the respective waitDelay() calls for Run and Arrival events are shown in Figure 9-5. 

Run Arrival

{N = 0} {N = N + 1}

tA

tA

public void reset() {

    super.reset();

    numberArrivals = 0;

}

public void doRun() {

    firePropertyChange(“numberArrivals”, getNumberArrivals());

    waitDelay(“Arrival”, interarrivalTime);

}

public void doArrival() {

    int oldNumberArrivals = getNumberArrivals();

    numberArrivals = numberArrivals + 1;

    firePropertyChange(“numberArrivals”, oldNumberArrivals,

        getNumberArrivals());

    waitDelay(“Arrival”, interarrivalTime);

}

Run Arrival

{N = 0} {N = N + 1}

tA

tA

public void reset() {

    super.reset();

    numberArrivals = 0;

}

public void doRun() {

    firePropertyChange(“numberArrivals”, getNumberArrivals());

    waitDelay(“Arrival”, interarrivalTime);

}

public void doArrival() {

    int oldNumberArrivals = getNumberArrivals();

    numberArrivals = numberArrivals + 1;

    firePropertyChange(“numberArrivals”, oldNumberArrivals,

        getNumberArrivals());

    waitDelay(“Arrival”, interarrivalTime);

}

{
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Figure 9-5. ArrivalProcess: Scheduling Edges and Delays in Simkit Component 

Note that the Event nodes each scheduling edge points to corresponds to a String 

of the same name that is the first argument of the corresponding waitDelay() call.  

Also, the delays on each scheduling edge correspond to a reference to 

interarrivalTime, the RandomVariate that implements the parameter }{ At . 

Putting it all together, the complete code for the Simkit class is shown in Figure 

9-6.  Note that the class has been defined to be in a package called 

“simkit.examples” and that the relevant import calls have been added.  It is also 

important to understand that the comments have been omitted from the code here. Note 

also that the zero-argument constructor is also present. This convention turns out to be 

useful when Simkit components are instantiated from external data sources, such as a 

database or XML file. 

package simkit.examples; 

 

import simkit.SimEntityBase; 

import simkit.random.RandomVariate; 

 

public class ArrivalProcess extends SimEntityBase { 

     

    private RandomVariate interarrivalTime; 

 

    protected int numberArrivals; 

 

    public ArrivalProcess(RandomVariate rv) { 

        this.setInterarrivalTime(rv); 

    } 

     

    public ArrivalProcess() { } 

 

    public void reset() { 

        super.reset(); 

        numberArrivals = 0; 

Run Arrival

{N = 0} {N = N + 1}

tA

tA

public void reset() {

    super.reset();

    numberArrivals = 0;

}

public void doRun() {

    firePropertyChange(“numberArrivals”, getNumberArrivals());

    waitDelay(“Arrival”, interarrivalTime);

}

public void doArrival() {

    int oldNumberArrivals = getNumberArrivals();

    numberArrivals = numberArrivals + 1;

    firePropertyChange(“numberArrivals”, oldNumberArrivals,

        getNumberArrivals());

    waitDelay(“Arrival”, interarrivalTime);

}
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    } 

 

    public void doRun() { 

        firePropertyChange("numberArrivals", getNumberArrivals()); 

 

        waitDelay("Arrival", interarrivalTime); 

    } 

     

    public void doArrival() { 

        int oldNumberArrivals = getNumberArrivals(); 

        numberArrivals = numberArrivals + 1; 

        firePropertyChange("numberArrivals", oldNumberArrivals,  

  getNumberArrivals()); 

 

        waitDelay("Arrival", interarrivalTime); 

    } 

      

    public void setInterarrivalTime(RandomVariate interarrivalTime) {  

        this.interarrivalTime = interarrivalTime;  

    } 

     

    public RandomVariate getInterarrivalTime() {  

        return interarrivalTime;  

    } 

     

    public int getNumberArrivals() {  

        return numberArrivals;  

    } 

} 

Figure 9-6. Complete Code for ArrivalProcess Class 

Although for a well-named getter or setter method a comment could be 

considered optional, for the key methods (i.e. the ‘do’ methods) comments, especially 

Javadoc comments, are essential.  Of course too much commenting can be nearly as bad 

as too little.  Figure 9-7 shows a reasonable comment for the doArrival() method. 

    /**  

     * An arrival of a customer.<br> 

     * State transition: increment number of arrivals <br> 

     * Schedule another arrival after interarrivalTime delay 

     */ 

    public void doArrival() { 

        . . . 

Figure 9-7. A Reasonable Comment for doArrival() 

9.5.2. Multiple Server Queue Component 

Recall the simple server component that is a minimalistic model of a multiple 

server queue.  The Event Graph is reproduced in Figure 9-8; to emphasize the fact that 

the StartService Event is scheduled with high priority, that is indicated on the two edges 

that schedule it in Figure 9-8. 
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Figure 9-8. SimpleServer Component 

The Simkit definition of the parameters (k and }{ St ) and the state variables (Q, S, 

and N) are straightforward and not shown here.  To demonstrate the conditions and 

setting of priorities on scheduling edges, the code for the two scheduling edges are shown 

in Figure 9-9. 

    public void doArrival() { 

           . . . 

        if (getNumberAvailableServers() > 0) { 

            waitDelay("StartService", 0.0, Priority.HIGH); 

        } 

    } 

 

    public void doEndService() { 

           . . . 

        if (getNumberInQueue() > 0) { 

            waitDelay("StartService", 0.0, Priority.HIGH); 

        } 

    } 

Figure 9-9.  Scheduling Edges with Conditions and Priorities 

Note how the Boolean conditions are implemented by wrapping the 

waitDelay() calls in if statements and how the priorities are set using 

Priority.HIGH.  Also, note that even though the time delays are not explicitly shown 

in Figure 9-8, they are explicitly implemented as 0.0 in the code. 

9.5.3. EntityCreator 

This is a simple creator pattern that illustrates passing a parameter on a scheduling 

edge as well as for using transient entities.  The Event Graph component for EnityCreator 

is shown in Figure 9-10. 

Arrival
Start

Service

End

Service

tS

(S > 0)

(Q > 0){Q = Q + 1} {S = S - 1,

   Q = Q - 1}

{S = S + 1, 

N = N + 1}

Run

{Q=0, S=k, 

N=0}

H

H
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Figure 9-10. EntityCreator Event Graph Component 

There are no state variables, and there is a single parameter name.  Figure 9-11 

shows the corresponding code for the Arrival event. 

    public void doArrival() { 

        Entity entity = new Entity(getName()); 

        waitDelay("EntityArrival", 0.0, entity); 

    } 

Figure 9-11. Code for Arrival Event for EntityCreator 

Note that the argument, the local variable, entity, is simply added as the last 

argument to the waitDelay() call to pass it to the EntityArrival event. 

9.5.4. Nested For Loop 

A slightly more complex illustration is shown in Figure 9-12, the Event Graph 

version of a nested ‘for’ loop. 

 

Figure 9-12. Nested ‘for’ Loop Event Graph Component 

The corresponding code for this (with the setters and getters omitted) is shown in 

Figure 9-13. 

public class NestedForLoop extends SimEntityBase { 

Arrival

Entity

Arrival

(x)
e

{e = new Entity(name)}
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    private int innerLimit; 

    private int outerLimit; 

 

    public NestedForLoop(int outerLimit, int innerLimit) { 

        this.setOuterLimit(outerLimit); 

        this.setInnerLimit(innerLimit); 

    } 

 

    public void doRun() { 

        waitDelay("Init", 0.0, Priority.HIGH, 0); 

    } 

 

    public void doInit(int i) { 

        if (i < getOuterLimit() - 1) { 

            waitDelay("Init", 0.0, Priority.HIGH, i + 1); 

        } 

        waitDelay("Init", 0.0, Priority.HIGHER, i, 0); 

    } 

 

    public void doInit(int i, int j) { 

        if (j < getInnerLimit() - 1) { 

            waitDelay("Init", 0.0, Priority.HIGHER, i, j + 1); 

        } 

    } 

. . .  

*** Setters and getters omitted *** 

Figure 9-13. Code for Nested ‘for’ Loop 

Note that n and m are implemented as outerLimit and innerLimit, 

respectively.  Also, this example shows how to pass more than one argument on a 

scheduling edge via waitDelay().  Specifically, the arguments are simply listed in 

order last in the call.  This also illustrates that if a priority is desired, it comes before the 

arguments and after the time delay.  In this case, the inner Init(i,j) event has HIGHER 

priority than Init(i), which only has HIGH priority.  Although it is likely not germane to 

the model, this prioritization ensures that the innermost Events are completed before the 

outermost Event advances, the way a nested ‘for’ loop works in programming languages. 

9.6. Discussion 

At this point there is sufficient information to enable the creation of Simkit Java 

classes from Event Graph components.  The process of doing this is a direct translation of 

each element of the Event Graph component, as summarized in Table 9-1.  There remains 

the issue of actually executing the model, which will be presented next. 

9.7. Creating and Executing a Model in Simkit 

At a minimum creating and executing a Simkit model involves the following 

steps: 

1. Instantiate the Event Graph components. 
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2. Connect the components as SimEventListeners or by using Adapters, if necessary. 

3. If collecting statistics, instantiate statistical PropertyChangeListener objects and 

connect to the relevant SimEntity objects as listeners; if dumping properties, 

instantiate SimplePropertyDumper and connect it 

4. Configure the Schedule class (e.g. verbose mode) 

5. Initialize and run. 

6. Output statistics from PropertyChangeListener objects, if this is done, or any post-

simulation information desired. 

9.7.1. ArrivalProcess Execution 

Figure 9-14 shows the contents of a main() method that executes the 

ArrivalProcess component discussed earlier.  The numbers in parentheses are not part of 

the code but correspond to the step in the previous section. 

(1)  
RandomVariate interArrivalTime = RandomVariateFactory.getInstance( 

        “Exponential”, 3.2); 

ArrivalProcess arrivalProcess = new ArrivalProcess(interArrivalTime); 

 

(3) 
SimplePropertyDumper simplePropertyDumper = new SimplePropertyDumper(); 

arrivalProcess.addPropertyChangeListener(simplePropertyDumper); 

 

System.out.println(arrivalProcess); 

 

(4) 
Schedule.setVerbose(true); 

Schedule.stopAtTime(15.0); 

 

(5) 
Schedule.reset(); 

Schedule.startSimulation(); 

 

(6) 
System.out.println("At time " + Schedule.getSimTime() + 

    " there have been " + arrivalProcess.getNumberArrivals() + " 

arrivals"); 

Figure 9-14. Code to Run ArrivalProcess in Verbose Mode 

 (1) The RandomVariate instance is obtained from RandomVariateFactory (in this 

case specifying an Exponential(3.2) distribution) and this instance is passed into the 

constructor for ArrivalProcess. 

 (2) Since this example consists of a single component, no listeners or adapters are 

needed.  (3) A SimplePropertyDumper is instantiated to display the state transitions, but 

there are no statistical listeners. 

4)Schedule is set to verbose mode and the run will end at time 15.0. 

(5) The run is initialized and executed. 
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(6) In this case the final number of arrivals is output after the simulation run 

finishes. 

The output for the run is shown in Figure 9-15.  Note that as each Event occurs, 

the state transition is displayed, followed by the Event being executed and the Event List 

status at that point in time. 

simkit.examples.ArrivalProcess.1 

        interArrivalTime = Exponential (3.2) 

 

** Event List 0 -- Starting Simulation ** 

0.000        Run         

15.000        Stop         

 ** End of Event List -- Starting Simulation ** 

 

numberArrivals: null => 0 

Time: 0.0000        CurrentEvent: Run [1] 

** Event List 0 --  ** 

0.645        Arrival         

15.000        Stop         

 ** End of Event List --  ** 

 

numberArrivals: 0 => 1 

Time: 0.6455        CurrentEvent: Arrival [1] 

** Event List 0 --  ** 

0.648        Arrival         

15.000        Stop         

 ** End of Event List --  ** 

 

numberArrivals: 1 => 2 

Time: 0.6485        CurrentEvent: Arrival [2] 

** Event List 0 --  ** 

2.801        Arrival         

15.000        Stop         

 ** End of Event List --  ** 

 

numberArrivals: 2 => 3 

Time: 2.8010        CurrentEvent: Arrival [3] 

** Event List 0 --  ** 

9.292        Arrival         

15.000        Stop         

 ** End of Event List --  ** 

 

numberArrivals: 3 => 4 

Time: 9.2922        CurrentEvent: Arrival [4] 

** Event List 0 --  ** 

15.000        Stop         

19.982        Arrival         

 ** End of Event List --  ** 

 

Time: 15.0000        CurrentEvent: Stop [1] 

** Event List 0 --  ** 

19.982        Arrival         

 ** End of Event List --  ** 

 

At time 15.0000 there have been 4 arrivals 
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Figure 9-15. Output of Verbose ArrivalProcess Execution 

9.8. Array Parameter and State Variables 

Some models involve defining parameters and/or state variables to be arrays. In 

that circumstance, similar conventions regarding scalar variables apply, with a few 

modifications. 

As with scalar parameters, array parameters should be defined with private 

access. There should be two setters and two getters for each array parameter. One 

setter/getter pair should return a copy of the entire array (using clone()) and the other 

pair should set or get a specific index of the array. 

For example for an array of type RandomVariate[] called serviceTime: 

private RandomVariate[] servicetime; 

. . . 

public void setServiceTime(RandomVariate[] serviceTime) { 

    this.serviceTime = serviceTime.clone(); 

} 

public void setServiceTime(int index, RandomVariate serviceTime) { 

this.serviceTime[index] = serviceTime; 

} 

public RandomVariate[] getServiceTime() { 

    return this.serviceTime.clone(); 

} 

public RandomVariate getServiceTime(int index) { 

    return this.serviceTime[index]; 

} 

Figure 9-16. Defining an Array Parameter 

Similarly, for state variables that are arrays, two getters are defined: 

protected int[] numberInQueue; 

. . . 

public int[] getNumberInQueue() { 

    return this.numberInQueue.clone(); 

} 

public int getNumberInQueue(int index) { 

    return this.numberInQueue[index]; 

} 

Figure 9-17. Defining an Array State Variable 

Typically, only one element of a state variable array changes for any given event. 

In that case, an IndexedPropertyChange must be fired instead of a PropertyChange. For 

example: 

public void doArrival(int station) { 

    int oldNumberInQueue = getNumberInQueue(station); 

    this.numberInQueue[station] += 1; 

    fireIndexedPropertyChange(station, “numberInQueue”,  

        oldNumberInQueue, getNumberInQueue); 

} 

Figure 9-18. State Transition for Array State Variable 
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The pattern in Figure 9-18 is typical in that the index of the array is an argument 

for the event. Without knowing the index, any listener would not know which of the 

elements of the array had changed value. The index of the changed value is the first 

argument to fireIndexedPropertyChange(…). 

9.9. Subclassing Simkit Components 

One of the advantages of Object-Oriented programming is the ability to subclass 

existing classes and utilize the power of inheritance. While many Simkit components are 

best implemented via a direct subclass of SimEntityBase or BasicSimEntity, 

there are some circumstances when it is advantageous to subclass an existing Simkit 

component. These circumstances are, of course, when there is an existing component that 

does most of what is desired, and a slight modification is needed. The desired 

modifications are typically of two types: (1) Additional events and variables are needed; 

and/or (2) Existing events require different or additional functionality. 

Consider the modeling functionality of the arrival of customers modeled as 

Entities, to be used by a queueing component that processes Entities, such as the 

EntityServer component in Figure 7-3 instead of simply counting, as with the 

SimpleServer component of Figure 5-3. One way is by way of the 

EntityCreator component, shown in Figure 7-2, together with an 

ArrivalProcess, connecting the listeners as shown in Figure 7-4. Alternatively, a 

subcomponent of the ArrivalProcess can be created with the resulting component 

adding the functionality of instantiating the Entity object and scheduling the 

Arrival(Entity) event. This is illustrated in Figure 9-19. Note that the standard UML 

notation for a subclass connects the Arrival process superclass with the EntityCreator 

subclass. Also, the EntityServer subcomponent does not introduce any new state 

variables, so the Run event is not needed there.  Of course, the EntityCreator component 

still does have a Run event inherited from ArrivalProcess. 
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Figure 9-19. EntityCreator as Subcomponent of ArrivalProcess 

A portion of the corresponding code is shown in Figure 9-20. Since the superclass 

Arrival functionality is still desired (incrementing the numberArrivals state variable 

and scheduling the next Arrival event), there is first a call to the doArrival() method 

in the superclass. It must be emphasized that this is the only situation when writing 

simulation components that a ‘do’ method should be directly invoked; all other times 

waitDelay(. . .) must be used. Next, the Arrival(Entity) event is scheduled with 

the new Entity object as its argument. 

public class EntityArrivalProcess extends ArrivalProcess { 

 

. . . // Constructors omitted. 

 

    @Override 

    public void doArrival() { 

        super.doArrival(); 

        waitDelay("Arrival", 0.0, new Entity()); 

    } 

} 

Figure 9-20. Code for Subclassing ArrivalProcess 

Note that the only omitted code in Figure 9-20 consists of the two constructors 

(and comments). Also, the @Override annotation reinforces that the doArrival() 

method is overridden. 

In other situations, the functionality of the superclass ‘do’ method must be 

completely replaced. In those cases, there would be no call to the superclass’ ‘do’ 
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method. For example, a subcomponent of the SimpleServer component in Figure 5-3 can 

be created to model a server with finite capacity. For this model, a new parameter is 

introduced, c = the capacity of the queue, which must be greater than or equal to zero. For 

generality, we will include the possibility of c = 0 (i.e. no queueing). An arriving 

customer who finds the queue full will balk – that is, leave the system never to return. 

Since an analyst would be interested in the number or percentage of customers who balk, 

an additional state variable is introduced to the subclass, B = the number of customers 

who balk. This is shown in Figure 9-21. 

 

Figure 9-21. Finite Capacity Server as Subcomponent of SimpleServer 

Note that there are two events in Figure 9-21 that are new: Balk and JoinQueue. 

These are consequences of how inheritance can work with methods. Also, the Arrival 

event has a thick border and StartService has a dashed border. A subclass can override a 

method and augment the superclass functionality or override a method completely 

replacing the superclass method’s functionality. In the former case, the superclass method 

must be invoked, whereas in the second case entirely new functionality is written. A 

subclass can also introduce new methods. 

The first two rows of Table 2-1 show the difference in notation between an 

augmented and completely overwritten event. An event with a “normal” thin border 

represents an event that augments a superclass event (or an entirely new event). An event 
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with a thick border represents an entirely overridden event. The third row in Table 9-2 

indicates that the StartService event is scheduled by the subcomponent but not 

overridden. 

Table 9-2. Event Graph Subclass Notation 

Event 

Notation Description 

 Augmented superclass event, or new event 

 Completely overridden superclass event 

 

Event in superclass but not in subclass that is scheduled from 

subclass. 

Note that for the EntityCreator example of Figure 9-19, both Arrival and 

Arrival(Entity) events had thin borders: the former because it augmented the 

ArrivalProcess Arrival event and the latter because it was a new event in the EntityCreator 

subcomponent. 

Great care must be taken when overloading methods with arguments. In 

particular, do not overload ‘do’ methods with arguments that could be ambiguous. For 

example, having doAnEvent(Number) in a superclass and doAnEvent(int) in the 

subclass should be avoided. 
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10. More Event Graph Examples 

10.1. Multiple Server Queue with Finite Capacity 

Customers arrive to a service facility and wait in a single queue for service from one of k servers. 

However, there is only a finite amount of room for customers to wait for service. A customer 

who arrives to find no room leaves (“balks”) and departs the system, never to return. This model 

includes the situation in which there is no room for queueing (i.e. the queue’s capacity is zero). 

10.1.1. Parameters 

• {tA} = interarrival times 

• k = # servers (k > 0) 

• {tS} = service times 

• c = queue capacity (c ≥ 0) 

10.1.2. State Variables 

• N = # potential customers (0) 

• B = # balks (0) 

• Q = # in queue (0) 

• S = # available servers (k) 

10.1.3. Event Graph (Full Model) 

 

Figure 10-1. Finite Capacity Queue Model 

The condition (Q < c || S > 0) on the Arrival-JoinQueue edge ensures that the model will be 

correct even if c = 0, in which case the condition is that there is an available server (Q < c will 

always be false in that case). For that situation there is a slight anomaly in that the maximum 

value of Q will be 1. However, since there is always zero time in that state, the statistics will 

otherwise be correct (e.g. the average number in queue will always be zero). 
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10.1.4. Event Graph Component 

 

Figure 10-2. Finite Capacity Queue as Component 

10.1.5. Listener Diagram 

The interarrival times {tA} comprise a parameter of an ArrivalProcess (or comparable 

component) to which the Finite Capacity Server Component listens. 

 

 

Figure 10-3. Listens to ArrivalProcess 

10.1.6. Subclassing SimpleServer Component 

The Finite Capacity Server component may be implemented as a subclass of SimpleServer as 

follows. 
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Figure 10-4. Subclassing SimpleServer Component 

Here, the Arrival event in the subclass completely overrides the Arrival event in 

SimpleServer, as indicated by the bold circle, whereas the StartService in the subclass is not 

overridden, as indicated by the dashed circle. This implementation differs very slightly from the 

previous since the state variable N in the SimpleServer superclass represents the number of 

customers served rather than the number of potential customers. The number of potential 

customers can be obtained from this component by the expression N + Q + S – k, which takes 

into account both the customers served as well as those in queue and in service. 

10.2. Tandem Queue 

This consists of two multiple server queue systems in series. Customers arrive to the first 

server as in the multiple server queue case. After completing service at the first server, each 

customer moves to the second server, waiting in another queue if there are no available servers in 

the second system. 
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10.2.1. Parameters 

• ki = total number servers at station i (i=0,1)  

• {tSi} = service times at station i (i=0,1) 

10.2.2. State Variables 

• Qi = number in queue at station i=0,1 (0) 

• Si = number available servers at station i=0,1 (ki) 

10.2.3. Event Graph Component 

 

Figure 10-5. Tandem Queue Component 

10.2.4. Adapter 

The tandem queue component in Figure 10-5 cannot be “driven” by simply listening to an 

ArrivalProcess, since the Arrival event scheduled by the ArrivalProcess does not match the 

Arrival0 event in the Tandem Queue Component. However, an adapter can be used to convert 

the Arrival event into an Arrival0 event, as shown in Figure 10-6. 

 

Figure 10-6. Adapter from ArrivalProcess to Tandem Queue Component 
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10.2.4.1. Variations 

• If there is travel time from the first station to the second, add a delay on the EndService0-

Arrival1 edge. 

• If the second station is entered with probability p, add a condition on the EndService0-

Arrival1 that (U < p), where U ~ Uniform(0,1) random variable. 

10.3. Tandem Queue with Blocking 

In this situation, station 1 in a tandem queue has finite capacity. Customers completing 

service at the station 0 who find no room in the station 1’s queue remain at the first server 

preventing that server from working on another customer. That server is “blocked” until room 

opens up in the second station. 

10.3.1. Parameters 

• ki = total number servers at station i (i=0,1)  

• {tSi} = service times at station i (i=0,1) 

• c = capacity of station 1 (c ≥ 0) 

10.3.2. State Variables 

• Qi = number in queue at station i=0,1 (0) 

• Si = number available servers at station i=0,1 (ki) 

• B = number of blocked servers at station 0 (0) 
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10.3.3. Event Graph 

 

Figure 10-7. Tandem Queue with Blocking 

Here, the state transition for the EndService0 event is to increment the number of blocked 

servers. If station 1 has availability for that customer, then the Arrival1 event is scheduled, which 

in turn decrements the number of blocked servers and increments the number of available servers 

at station 0.  

10.4. Continuous Review <Q,r> Inventory Model 

Demands for a single item arrive periodically, with the amount demanded at each time 

possibly random. A <Q,r> inventory policy specifies an order of size Q being placed whenever 

the inventory position reaches the reorder point, r, or below. Orders once placed arrive some time 

later, possibly random. 

10.4.1. Parameters 

• {tA} interarrival times for demands 

• {D} amount of items demanded each occurrence 

• I0 = initial inventory (I0 > r) 

• Q = order quantity (Q > 0) 

• r = reorder point 

10.4.2. State Variables 

• OH = number of items on-hand (I0) 

• BO = number of items on backorder (0) 
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• OO = number of items on order (0) 

• NO = total number of orders placed (0) 

10.4.3. Event Graph 

 

Figure 10-8. Simple <Q,r> Inventory Model 

The reorder point does not necessarily have to be positive or even non-negative. Also, the 

starting net inventory position should be greater than the reorder point. In this case, the starting 

states are such that the amount on hand exceeds the reorder point. Alternatively, other starting 

states could be used. However, this type of model is typically used for helping establish the 

inventory policy, namely selecting values of Q and r. For that, steady-state analysis is most 

appropriate, and the initial conditions don’t factory in. 

The continuous review policy is modeled by the fact that an order is placed whenever a demand 

pushed the net inventory position to the reorder point (or below). A periodic review policy would 

involve an additional Review event being periodically scheduled to evaluate the net inventory 

position and possibly place an order. 

10.5. Transfer Line Component with Entities 

10.5.1. Parameters 

• n = # workstations 

• {tSi} = Service times at workcenter i, i=0…,n-1 

• ki = # servers at workstation i, i=0,…,n-1 

10.5.2. State Variables 

• Si = # available servers at station i, i=0,…,n-1 (ki) 

• qi = fifo queue of waiting jobs at station i, i=0,…,n-1 (0) 

• Di = delay in queue at station i, i=0,…,n-1 (NaN) 

• Wi= time at station i, i=0,…,n-1 (NaN) 

• DT = Total delay in queue for a job (NaN) 

• WT = total time in system for a job (NaN) 
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10.5.3. Event Graph Component 

 

Figure 10-9. Transfer Line Component 

10.5.4. Job Entity 

The Job entity subclasses Entity (see Figure 10-10) and adds totalDelayInQueue (initially 

0.0) and nextWorkstation (initially 0) as attributes. Each Job therefore keeps track of its 

workstation number and increments when completing service at that station (EndProcessing 

event). In the Event Graph of Figure 10-9, for simplicity sake, expressions such as “j.D = j.D + 

Di” in the StartProcessing event are implemented using the incrementTotalDelayInQueue() 

method of Job. Similarly, expressions such as WT = j.age in the JobComplete event are 

implemented using the getAge() method of Entity. 
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Figure 10-10. UML Class Diagram for Job Entity 

10.5.5. Job Creator Component 

{tA} = job interarrival times. 

 

Figure 10-11. Job Creator Component 

The Job Creator component can be implemented as a singular event graph, as in Figure 

10-11 or by subclassing ArrivalProcess, as in Figure 10-12. 
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Figure 10-12. Subclassing ArrivalProcess to Create Job Entities 

Either implementation can be used to generate Job entities, which are heard by the  

 

Figure 10-13. Listener Diagram for Transfer Line Component 

10.6. Multiple Server Queue with Two Server Types 

In the multiple server queue setting, there are two types of servers (type 0 and type 1). 

Each server type has a different distribution of service times. This difference could reflect 

experience, training levels, etc. Although there is only one type of customer, the length of service 

depends on which type of server is being utilized. Customers “prefer” server type 0, so an 

arriving Customer who has a choice will select server type 0. However, if a server of type 0 is 

not available but a server of type 1 is, then the Customer will be served by a type 1 server. 

10.6.1. Parameters 

• ki = number of servers of type i, i=0,1 

• {tSi} = service times for server i, i=0,1 

10.6.2. State Variables 

• Q = number in queue (0) 

• Si = number of available servers of type i, i=0,1 
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10.6.3. Event Graph Component 

 

Figure 10-14. Multiple Server Queue with Two Server Types 

In Figure 10-14, the customer preference is captured by the two scheduling edges from 

the Arrival event. If a server of type 0 is available (S0 > 0), then StartService0 is scheduled. In 

that case, condition (S0 == 0) is false, so the other scheduling edge will not be utilized. On the 

other hand, if no server of type 0 is available but a server of type 1 is, then StartService1 is 

scheduled. Finally, if neither type of server is available, then neither StartService event is 

scheduled. 

Since there is a single Arrival event that corresponds to a customer arrival, the 

component in Figure 10-14 can be driven by simply listening to an ArrivalProcess instance, in a 

similar manner as in Figure 10-3. 

Another formulation of this model utilizes arguments on events, which reduces the 

number of events. This is illustrated in Figure 10-15. 
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Figure 10-15. Two Server Types with Arguments 

10.7. Multiple Server Queue with Two Customer Types 

A multiple server queue setting with two distinct types of customers (call them type 0 and 

type 1). Each type of customer has their own interarrival times and service times. While there is 

only one type of server, the service times depend on what type of customer is being served. 

Servers have a ‘preference’ for customers of type 0; when completing service, regardless of 

which type of customer, if both types of customers are in the queue, a type 0 will be served next. 

Type 1 will be chosen in that situation only if there are no type 0 customers in queue. 

The component will not model the arrivals, which will be done by another component. 

10.7.1. Parameters 

• k = total # servers 

• {tSi} = service times for customers of type i, i=0,1 

10.7.2. State Variables 

• Qi = # customers in queue of type i, i=0,1 (0) 

• S = # available servers (k) 
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10.7.3. Event Graph Component 

 

Figure 10-16. Event Graph Component for Two Customer Types 

In Figure 10-16, note that there is only need for a single EndService event, since the next 

scheduled event (if any) depends on the state of the queue, not on the type of customer who was 

just served. Also, the servers’ ‘preference’ is captured by the mutually exclusive booleans on the 

outgoing edges from EndService: If a type 0 customer in in queue, that will be the next type 

served; if no type 0 customers are in queue but there are type 1 customers, that type will be 

served. 

10.7.4. Generating Arrivals 

There are several ways in which the component in Figure 10-16 can be ‘driven’ (i.e. have 

the Arrival0 and Arrival1 events triggered). The most straightforward is an extension of the 

ArrivalProcess component with two parameters, {tAi}, i =0,1, representing the interarrival times, 

as shown in Figure 10-17. A single instance of the server component in Figure 10-16 will listen 

to an instance of the component in Figure 10-17 thereby triggering either the Arrival0 or the 

Arrival1 event as they occur. 
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Figure 10-17. Arrival Process for Two Types of Customers 

The listener diagram will be as in Figure 10-18. 

 

Figure 10-18. Listener Diagram for Two Customer Type Component 

An alternative approach is to instantiate two ordinary ArrivalProcess instances and adapt 

each to the appropriate Arrivalx event, as shown in Figure 10-19. 

 

Figure 10-19. Adapting ArrivalProcesses to Server Component in Figure 10-16 

In a similar approach as with Figure 10-15, the server component can be modeled with 

arguments on some events, as shown in Figure 10-20. 
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Figure 10-20. Two Customer Types with Event Arguments 

The server component in Figure 10-20 cannot be driven by an instance of Figure 10-17 

component or by adapting ArrivalProcess instances, as in Figure 10-19 because of the 

requirement of an argument in the Arrival(i) event of Figure 10-20. Therefore, another type of 

component is required. There are several possibilities. One is similar to Figure 10-17 with 

arguments, as shown in Figure 10-21. An instance of Figure 10-20 can simply listen to an 

instance of Figure 10-21. 

 

Figure 10-21. Two Types of Arrivals with Argument 

10.8. Using Containers for Both Customers and Servers 

One downside of the SimpleServer model of the multiple server queue is the inability to 

track statistics on customer times (such as delay in queue) as well as server statistics (such as 

different server abilities or efficiency). The customer times can be directly modeled using the 

EntityServer component (or equivalent), but still lacks individual statistics for servers. This latter 

shortcoming can be overcome by modeling each server as an entity and maintaining a container 

of available server entities, rather than the simple count as in the previous models. 

For this version of the model, the customers will be modeled as a subclass of Entity and 

carry respective service times as an additional attribute. 
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10.8.1. Customer Entities 

 

Figure 10-22. Customer Entities Subclass Entity 

10.8.2. Customer Creator Component 

The CustomerCreator component instantiates a Customer object, c, at each Arrival event 

and schedules an Arrival(c) event to be heard by the server component. 

10.8.2.1. Parameters 

• {tA} – interarrival times 

• {tS} – service times 

10.8.2.2. Event Graph 

 

Figure 10-23. Customer Creator Component 

10.9. Server Component 

10.9.1. Parameter 

• all = array of Entities representing servers 

Run Arrival
Arrival

(c)

tA

tA

{c = new Customer(tS)}



 

10-17 

 

10.9.2. State Variables 

• q = fifo queue of Customer instances (empty) 

• m = container of available servers (contains k server Entity instances) 

• D = delay in queue (NaN) 

• W = time in System (NaN) 

The container of available servers can be instantiated to reflect whatever rule is in effect 

for the next server. For example, a fifo container will assign the server who has had the greatest 

amount of time elapsed since their last service completion to an arriving customer. 

10.9.3. Event Graph 

 

Figure 10-24. Explicit Server Component 

In Figure 10-24, abbreviations are indicated to reduce clutter. For example, c.tS represents 

the service time attribute for customer c. It implementation would use the getter method for 

service time. Similarly, c.elapsedTime would also use the getter for the elapsedTime attribute in 

the Entity class. 

10.9.4. Listener Diagram for Explicit Server Model 

The Explicit Server Component of Figure 10-24 can be driven by a Customer Creator 

component of Figure 10-23 via the listener diagram shown in Figure 10-25. 



 

10-18 

 

 

Figure 10-25. Listener Diagram 

10.10. Servers with Different Efficiencies 

In this situation, each server has an “efficiency,” which is a simple model for how fast 

each one works. It acts as a multiplier to the service time. A server with an efficiency of one will 

service each customer at exactly their respective service times, but a server with efficiency less 

than one is “faster” and will service a customer for less that their nominal service time, and a 

server with efficiency greater than one will take longer than the nominal amount. 

The previous model can be adapted to handle this situation. Each server entity will now 

be a subclass of Entity and add an efficiency attribute. 

10.10.1. Server Entity 

 

Figure 10-26. Server Entity Subclass 

10.10.2. Event Graph 

The parameter and state variables for this model are identical to the Explicit Server 

model, with the exception being that the container m will hold Server instances rather than 

Entities. 

The Event Graph is likewise identical in all respects except for the StartService-

EndService(s,c) scheduling edge, for which the delay is the Customer’s service time multiplied 

by the server’s efficiency. 
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Figure 10-27. Server Component with Efficiencies 

An alternative approach is to subclass the Explicit Server Component of Figure 10-24 

and override the StartService event, as shown in Figure 10-28. 

 

Figure 10-28. Overriding Explicit Server Component 

Recall that the thick solid outline of the StartService event in Figure 10-28 indicates that 

the superclass StartService event is completely overridden, while the dashed outline of the 
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EndService(s,c) event indicates that the corresponding event in the superclass is used. Thus, the 

scheduling edge StartService-EndService(s,c) is in the subclass, but the EndService(s,c)-

StartService edge is in the superclass. 

One complication of the implementation of Figure 10-28 in Simkit is in how the 

StartService event can obtain the server’s efficiency attribute given that the superclass container 

m is defined to hold Entity objects. Since Server subclasses Entity there is no issue in that regard, 

but the object popped from the container m must be cast to a Server. This means that care must 

be taken to populate the component with only Server instances. This can be guarded by 

overriding the setter method of the allServers parameter and checking each to be an instance of 

Server, throwing an exception if it isn’t. That will guarantee that the cast will be successful. 

10.11. Simple Machine Repair Model 

A group of m identical machines operate for a certain period of time and then fail. Upon 

failure, they are repaired by one of r (identical) repair people. A failed machine must queue for 

an available repair person. Upon repair, the machine has a new time until failure, so each 

machine goes through an alternating cycle of operational-failed. 

10.11.1. Parameters 

• m = number machines 

• r = number repair people 

• {tF} = times until failure. 

• {tR} = times to repair 

10.11.2. State Variables 

• F = number of failed machines (0) 

• R = number of available repair people (r) 
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10.11.3. Event Graph 

 

Figure 10-29. Simple Machine Repair Model 

There are several noteworthy points about the Event Graph in Figure 10-29. First, unlike 

the queueing models so far, it has a finite calling population; that is, there are only finitely many 

potential “customers” (i.e. operational machines). Therefore, the rate of “arrivals” (failures) 

depends on the number of operational machines. This is in contrast to an ArrivalProcess, which 

assumes an infinite calling population and the corresponding arrival rate being unaffected by the 

number of customers in the system. Therefore, an ArrivalProcess approach to machines failures 

would not be correct. 

Second, the failures are triggered by clock time (simTime), which may or may not be 

accurate. In the extreme, machines might be failing only when operational rather than by a set 

clock time. Alternatively, machines might have two failure modes, one when operating and one 

when idle. 

Third, the condition on the EndRepair-StartRepair edge, (F ≥ r), might seem counter-

intuitive at first glance. Since the condition is evaluated after R is incremented, the condition 

reflects the statement “there is at least one failed machine waiting to be repaired.” Note that the 

condition (F > 0) would not reflect this state of the system; for example, just before and 

EndRepair event, let the parameters be r=2, m=3 and the states be R=0, F=2. After EndRepair is 

executed, the states are R=1, F=1, that is there is one failed machine currently in repair. The 

condition (F > 0) is true, but (F ≥ r) is false, since F=1 < 2=r. 

Finally, defining the state variable F as the number of failed machines means that the 

state transitions are different than that of Q (number in queue) of some previous models. The 

advantage of defining F this way is that a straightforward time-varying mean 𝐹̅gives the average 

number of failed machines, while 1 − 𝐹̅/𝑚 gives the average utilization. Of course, the states 

could have been defined in a manner closer to the previous queueing models. 
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10.11.4. Alternate State Variables 

• R =number of available repair people (r) 

• Q = number of failed machines waiting for repair. 

10.11.5. Alternate Event Graph 

 

Figure 10-30. Event Graph for Alternate State Variables for Machine Repair Model 

Figure 10-30 shows how the Event Graph would be for the alternate state definition. Note 

that now the time-averaged mean of Q represents the average number of machines waiting for 

repair. If utilization is desired, then we can use the fact that 𝑄 + 𝑟 − 𝑅 is the number of failed 

machines, so 𝑄̅ + 𝑟 − 𝑅̅ is the average number of failed machines and 1 − (𝑄̅ + 𝑟 − 𝑅̅)/𝑚 is 

average utilization. 

10.12. Intermediate Machine Repair Model 

There are a collection of m machines and r repair people, as in the previous model. 

However, the machines process parts, which arrive periodically, and only are failing when 

processing (not when idle). Therefore, unlike the simple model, for each machine the time to 

failure consist of the amount of processing time until it fails. Upon failure, a machine waits in 

queue for an available repair person. 

Since a machine will always be in the middle of processing a part when it fails, the 

question arises what to do with that job. The simplest rule might be that the part is simply 

discarded. The next model will consider the possibility that the part can be recovered and the 

amount of work on it taken into account. 

The parts will not be explicitly modeled, and will arrive according to an ArrivalProcess; 

consequently, that will not be part of the component here. 
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10.12.1. Server Entity 

The server entity has an additional attribute, timeToFailure, as shown in Figure 10-31. 

Server Entity. Note that “timeToFailure” mean the amount of processing time until failure, not 

clock time. The updateTimeToFailure() methods assumes that the Server instance has had its 

time stamped at the start of processing, so it decrements the timeToFailure by the elapsedTime. 

 

Figure 10-31. Server Entity 

10.12.2. Parameters 

• m = array of Server entities 

• r = total number of repair people 

• {tS} = processing times for jobs 

• {tF} = initial times to failure for machines (set initially and upon repair) 

• {tR} = repair times 

10.12.3. State Variables 

• Q = number of parts in the queue (0) 

• R = number of available repair people (r) 

• rq = queue of failed machines waiting for repair (empty) 

• mp = container of available, operational machines (contents of m) 

• P = number of discarded parts due to machine failure (0) 

10.12.4. Event Graph Component 

As noted above, the parts will arrive according to an ArrivalProces. Furthermore, since a 

part being processed on a failed machine is discarded, we only need to keep track of how many 

have been lost in this way (the state variable P). 
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Figure 10-32. Intermediate Machine Repair Model 

The key in capturing the machine failures is in updating the remaining time to failure in 

each Server instance in the EndProcessing event. Of course, the implementation will use 

accessor methods rather than directly setting the value, as implied by the Event Graph. The 

StartProcessing event “knows” whether a service completion will occur or a machine failure 

according to whether the remaining time to failure is greater than or less than the processing 

time. 

In Figure 10-32, the stampTime() calls to a Server instance in the StartProcessing event is 

key to correctly updating the timeToFailure in the EndProcessing event. 

10.13. A More Advanced Machine Repair Model 

Suppose that parts being processed when a machine fails are not destroyed but can have 

their processing continue on a different machine. While in actuality there will be times 

associated with unloading and re-loading the part, for the purposes of this model these times will 

be ignored. However, the model needs to keep track of the remaining processing times for each 

such part. For example, suppose a part has a total processing time of 1.5 hours and its machine 

fails after working for 1.2 hours. The part now has 1.3 remaining hours of processing to be done. 

Upon failure, a part is “credited” with the amount of work performed and returned to the 

part queue and treated like any other part. Upon resumption of processing, only the remaining 

processing time is the amount of work required. 

For simplicity, elements such as loading/unloading times are not considered. Also, a 

part’s work is completely “credited” if on a machine that fails. For example, it can be the case 

that such a part is damaged and requires additional processing before ready to resume work on it. 

These features can be added in a straightforward manner. 



 

10-25 

 

10.13.1. Job and Server Entities 

To capture partially completed parts, a Job entity subclasses Entity and adds a 

remainingTime attribute. Also, the Server entity in Figure 10-31 adds a Job attribute to reflect 

the current Job the server is processing (Figure 10-33). 

 

Figure 10-33. Job and Server Entities 

10.13.2. Parameters 

The parameters are identical to the previous model with the exception of the Jobs’ 

processing times, which are carried by the Job entities. 

• am = array of Server entities 

• r = total number of repair people 

• {tF} = initial times to failure for machines (set initially and upon repair) 

• {tR} = repair times 

10.13.3. State Variables 

Similarly, the state variables are nearly identical, the exceptions being the queue of 

waiting Jobs now being modeled as a container and there being no lost Parts. 

• q = container of parts waiting for processing (empty) 

• R = number of available repair people (r) 

• qF = queue of failed machines waiting for repair (empty) 

• s = container of available, operational machines (contents of am array) 
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10.13.4. Event Graph Component 

 

Figure 10-34. Servers with Failures and Work Credited to Jobs 

In Figure 10-34, note that a Part on a machine that fails gets added first in the queue of 

waiting Jobs. Alternatively, it could be simply sent to the end of the queue to wait its turn. 

10.13.5. Job Creator Component 

The Job Creator component now assigns the processing time to each Job’s 

remainingTime attribute when created. 

• {tS} = total processing time for Jobs 
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Figure 10-35. Job Creator Component 

10.14. Simple Disassembly and Inspection 

Parts arrive to a facility and are disassembled into their two component parts (call them A 

and B). Once disassembled, each part must be inspected. Disassembly and inspections are 

performed by two different sets of workers. To break ties, assume that components of type A are 

inspected ahead of those of part B (alternative rules will be examined later). 

10.14.1. Parameters 

• kD = # disassembly workers 

• kI = # inspection workers 

• {tD} = disassembly times 

• {tA} = inspection times for component A 

• {tB} = inspection times for component B 

10.14.2. State Variables 

The simplest (and fasted executing) formulation is with state variables that are just 

counters. 

• WD = # available disassembly workers (kD) 

• WI = # available inspection workers (kI) 

• QD = # parts waiting to be disassembled (0) 

• QA = # type A components waiting to be inspected (0) 

• QB = # type B components waiting to be inspected (0) 
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10.14.3. Event Graph Component 

 

Figure 10-36. Disassembly and Inspection Component 

10.14.4. Listener Diagram 

The component in Figure 10-36 can be driven by adapting the Arrival event of an 

ArrivalProcess to the PartArrival event of the component. 

 

Figure 10-37. Listener Diagram for Simple Disassembly and Inspection Model 

10.15. Simple Reassembly Component 

A simple component to reassemble the parts from the previous model assumes that 

components A and B are interchangeable. That is, a part can be reassembled from any A and B 

components. The logic is a variation on the SimpleServer. 

10.15.1. Parameters 

• kA = # assembly workers 

• {tA} = assembly times (not to be confused with interarrival times of the ArrivalProcess) 



 

10-29 

 

10.15.2. State Variables 

• WA = # available assembly workers (kA) 

• QA = # components of type A waiting for reassembly (0) 

• QB = # components of type B waiting for reassembly (0) 

10.15.3. Event Graph 

 

Figure 10-38. Simple Reassembly Component 

The listener diagram in Figure 10-39 creates a model with disassembly, inspection, and 

reassembly. 

 

Figure 10-39. Simple Disassembly, Inspection, and Reassembly 

10.16. Semi-Automatic Machines 

Parts arrive to a facility and are processed on semi-automatic machines. Specifically, a 

worker is required to load the part onto the machine, but one loaded the machine processes the 

part by itself and the worker is free to perform another task (or become idle, if no tasks are 
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needed). Once the part is completed on a machine, a worker is needed to unload the part. It takes 

a certain amount of time to load and to unload each part. 

Only the facility part of is modeled. The first model uses simple counters as states. 

10.16.1. Parameters 

• k = number of workers 

• m = number of machines 

• {tS} = processing time on machines 

• {tL} = loading times 

• {tU} = unloading times 

10.16.2. State Variables 

• S = number of available workers (k) 

• M = number of available machines (m) 

• QL = number of parts waiting to be loaded (0) 

• QU = number of parts waiting to be unloaded (0) 

10.16.3. Event Graph Component 

 

Figure 10-40. Semi-Automatic Machine Component 
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The implicit assumption in Figure 10-40 is that when a worker becomes free, if there are 

both parts waiting to be loaded as well as unloaded, that unloading takes precedence. This is 

implemented in the edge conditions on the EndLoading and EndUnloading events. Specifically, 

if there is a part waiting to be unloaded, (QU > 0) the StartUnloading event will be scheduled. In 

that circumstance the StartLoading event will only be scheduled if no parts are waiting to be 

unloaded (QU == 0) and there are parts waiting to be loaded (QL > 0). 

10.17. Two Customer Types with Different Service Requirements 

Two types of customers (call them 0 and 1) arrive to a service facility, each with their 

own process of arrivals. Type 0 customers need 1 server, but type 1 customers require 2 servers. 

Each type has their own service times. There are multiple servers, but they are interchangeable.  

For specificity, assume that servers “prefer” customers of type 1; that is, when a server 

completes service, if it is possible to work on a type 1 customer (i.e. one is available and there is 

another available server), then they will do so. Otherwise, they will work on a type 0 customer, if 

one is available. 

10.17.1. Parameters 

• k = number of servers 

• {tSi} = service times for customers of type i(i=0,1) 

10.17.2. State Variables 

• S = number of available servers (k) 

• Qi = number of customers in queue of type i(i=0,1) 
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10.17.3. Event Graph 

 

Figure 10-41. Server Component for Two Customer Types with Different Requirements 

In Figure 10-41 note that since a completion of service on a type 1 customer frees two 

servers, in the situation where EndService1 occurs and no type 1 customers are waiting, there 

could be as many as two StartService0 events, depending on how many type 0 customers are 

waiting. 

10.17.4. Adding Arrivals 

To create the two types of customer arrivals, instantiate two ArrivalProcess instances and 

connect via adapters to Arrival0 and Arrival1 events in Figure 10-41, respectively, as shown in 

Figure 10-42. Each ArrivalProcess instance will be configured with the interarrival times for that 

customer type. 
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Figure 10-42. Adapter Diagram 

10.18. Increasing Servers When Queue is Large 

A multiple server queue system starts with k servers, but when the queue length exceeds 

a threshold m, another server comes on line, up to a maximum of k1. When the queue length 

drops to 0, then the number of working servers decreases (but never goes below k). Assume that 

there is no appreciable time required for adding or removing a server. 

10.18.1. Parameters 

• k = starting and minimum number of working servers 

• k1 = maximum number of working servers 

• {tS} = service times 

10.18.2. State Variables 

• Q = number in queue (0) 

• S = number of available servers (k) 

• T = number of working servers (k) 
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10.18.3. Event Graph Component 

 

Figure 10-43. Variable Server Capacities 

Alternatively, the Simple Server component could be sub-classed as in Figure 10-44. 
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Figure 10-44. Subclassing Simple Server Component 

The AddServer event is scheduled when the queue reached the threshold m and there are 

enough spare servers to add. The AddServer-StartService edge is unconditional, since it will 

occur only when Q >0 it increments S (i.e. there is a customer in the queue and an available 

server after its state transition). The EndService-RemoveServer edge is scheduled when the 

queue reaches zero (which can only occur when EndService occurs) and decreasing the number 

of working servers won’t drop it below the minimum of k. 

Note that all the events which decrement the number of available servers are scheduled 

with high priority in order to occur before the (unlikely) situation when an Arrival event occurs 

at the same simulated time.  
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11. Random Variate Generation 

11.1. Introduction 

This section is a basic introduction to random variate generation, or more accurately, 

pseudo-random variate generation. It is intended to be an elementary introduction, so there will 

be many areas not covered. The reader is encouraged to consult the references at the end for 

further information and more in-depth coverage of this topic. The primary aim is to give a 

modeler the basic tools with which to implement the modeling of randomness in a simulation 

model. The implementation of the algorithms may be done in a conventional programming 

language, as scripting language, or even a spreadsheet. 

11.2. The Basic Problem 

For the purpose of developing algorithms, it is assumed that there is some source of 

independent, identically distributed (iid) Un(0,1) random numbers available in infinite quantity. 

In implementations, this sequence of numbers will be pseudo-random generated by some 

appropriate algorithm. The methodology to select, develop, or test such algorithms is a 

fundamentally different problem than the one addressed here, and there is a wealth of literature 

on such methods (cite references). 

The problem addressed in this note is as follows: given a sequence }{ nU  of Un(0,1) 

random numbers, derive a sequence }{ nX  of random variates having a specified distribution. We 

will primarily consider the case where the sequence }{ nX  is iid for some random variable X . 

The remainder of this note is organized as follows. The following three sections present 

the primary generic methods for generating random variates (Inverse Transform, Composition, 

and Acceptance/Rejection Methods). Each section will first give the general algorithm followed 

by some examples.  

11.3. Inverse Transform Method 

The Inverse Transform Method is the most basic of all methods and can be considered 

the primary building block on which the other methods considered here will build. 

11.3.1. The Method 

The Inverse Transform Method starts with the cumulative distribution function (cdf) of 

the desired random variate X : 

(1) }Pr{)( yXyFX =  

The method itself is based on the fact that if U is a Un(0,1) random variable, then 

)(1 UF −
 is a random variable whose cdf is F . That is, 

(2)    yXyUFX =− Pr)(Pr 1
. 



 

11-2 

 

Some care must be made in defining the inverse cdf since the cdf may have jumps (as the 

case with discrete random variables) or regions where the cdf is “flat” (also the case with all 

discrete random variables, but also true for many other probability distributions). 

Equation (2) can be applied to the entire sequence }{ nU giving an immediate solution to 

the problem, namely  )(1
nX UF −  being a sequence of iid random variables each having the 

desired cdf XF . This may be implemented using the following method. 

(3) Generate U ~ Un(0,1) 

 Return )(1 UFX

−
 

This method returns a random variable having cdf XF . 

Instead of the cdf, the complementary cdf (ccdf) may be used instead. The ccdf is defined 

to be 

(4)  yXyFX = Pr)( . 

For some distributions using 
1−

XF  instead of 
1−

XF may be more convenient or efficient. 

For distributions with “flat” regions (i.e. segments with probability of zero) the inverse 

must be defined carefully: 

(5) })(:min{)(1 wyFywF XX =− 5 

The expression in (5) is used for finding the inverse transform method of a discrete 

distribution, as will be seen in the examples. 

11.3.2. Examples 

We will now work through some examples of the Inverse Transform Method, starting 

with some simple distributions and moving to some more complicated ones. 

11.3.2.1. Un(a,b) Distribution 

One of the simplest non-trivial distributions to consider is the general Un(a,b). Note that 

for Un(0,1), the assumption that there is a supply of such random variates makes that problem a 

trivial one. As with most continuous distributions, the Un(a,b) random variable is typically 

specified by its pdf, rather than its cdf. Thus, if X~Un(a,b), its pdf is: 

(6)
otherwise,

,

0

1

)(
bya

abyf X









−= . 

In order to apply the Inverse Transform Method, the inverse cdf is required, which in turn 

requires the cdf.  

 
5 Technically the “min” should be “inf” (or infimum). 



 

11-3 

 

(7)

by

bya

ay

ab

ay
yFX















−

−
=

,

,

,

1

0

)( . 

The inverse cdf is the functional inverse of the cdf. Recall that to find the inverse of a 

function, set the functional expression equal to some variable and solve for the function’s 

argument. Setting )(yFz X= and solving for z, therefore, the inverse cdf for the Un(a,b) 

distribution is: 

(8) 10),()(1 −+=− zabzazFX . 

Thus the Inverse Transform Method for generating Un(a,b) random variates is given in .. 

(9)Generate U ~ Un(0,1) 

 Return )( abUa −+  

11.3.2.2. Triangle(0,b,b) Distribution 

The simplest form of the triangle distribution has a pdf as shown in Figure 11-1 

 

Figure 11-1. Triang(0,b,b) Pdf 

Using the fact that the area of a pdf is 1, the equation of the pdf in Figure 11-1 is 

(10)








=

otherwise,0

0,
2

)( 2
byy

byfX  

The cdf is therefore 

(11)



















=

by

by
b

y

y

yFX

,1

0,

0,0

)(
2

2

 

The inverse cdf therefore is 

0 b
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(12) 10  ,)(1 =− wwbwFX  

Note that the positive root must be chosen when inverting the cdf because the values 

generated must be in the interval ),0( b . Therefore the method for generating triang(0,b,b) is: 

(13)
Ub

UnU

Return 

)1,0(~ Generate
 

11.3.2.3. Triang(-b,0,-b) Distribution 

The triang(-b,0,-b) distribution has pdf 

(14)






−−

=

otherwise,0

0,
2

)( 2
yby

byfX  

With cdf 

(15)















−−

−

=

0,1

0,1

,0

)(
2

2

y

yb
b

y

by

yFX . 

The inverse cdf is found to be 

(16) 10  ,1)(1 −−=− wwbwF
X

 

Note that in this case the negative root had to be chosen because the generated values 

have to be negative, The method is therefore 

(17)
Ub

UnU

−1-Return 

)1,0(~ Generate
 

11.3.2.4. Exponential () Distribution 

The exponential distribution can be parameterized by either the mean or the rate 

(1/mean). Typically for simulation purposes the mean parameterization is more convenient, and 

that is the one we shall use. The Exponential(λ) distribution has pdf 

(18)











=

−

0,0

0,
1

)(
/

y

ye
yf

y

X



  

The cdf is 

(19)






−
−=

00

0/
1)(

y

yy
eyFX


 



 

11-5 

 

For 10  w , setting )(yFw X= and solving for w gives )1ln()(1 wwFX −−=−  . The 

method is thus 

(20)
U)-ln(1-Return 

)1,0(~ Generate



UnU
 

Often the complementary cdf is used instead: )ln()(1 wwFX −=−
. 

11.3.2.5. More than One Functional Form 

When inverting the cdf, care must be taken when obtaining the break points for the 

inverse cdf when there are multiple functional forms for different ranges of values for the 

random variable. If the cdf is of the form 

(21) nibybyFyF iiXX i
,1 , ),()( 1 == −  

where ==− nbbb 10 , then the inverse cdf is given by: 

(22) nibFwbFwFwF iiXiiX
iXX

,1 ),()( ),()( 1
11 == −
−− . 

The generic method in this case is therefore: 

(23)
)()(  where),(Return 

)1,0(~  Generate

1

1

iXiXX bFUbFUF

UnU

iii
−

−  

As an example, consider the following pdf: 

(24)



















=

otherwise,0

43,
4

1

31,
8

3

)( y

y

yf X . 

The corresponding cdf is: 

(25)


















−



=

4,1

43,
4

31,)1(
8

3

1,0

)(

y

y
y

yy

y

yFX . 

The inverse cdf is therefore 

(26)










+
=−

1
4

3
,4

4

3
0,1

3

8

)(1

ww

ww
wF
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The method is therefore: 

(27)

U

U

U

UnU

4Return   

 Else

1
3

8
Return   

 ,
4

3
 If

)1,0(~ Generate

+











 

11.3.2.6. Functions of Random Variables 

It is evident that if there is a method of generating a random variate X , and the desired 

distribution is )(Xg , then first X can be generated and )(Xg returned. Specifically, if the 

function g is invertible, then the inverse cdf of )(Xg is ( ))(1 wFg
X
− . 

For example, a linear transformation aXac +− )( can be applied to the triang(0,1,1) 

distribution to obtain the triang(a,c,c) distribution, and the transformation cXcb +− )( can be 

applied to the triang(-1,0,-1) distribution to obtain the triang(c,b,c) distribution. The respective 

inverse cdf’s are  

(28)
c)b,(c,for triang 10 ,w-1c)-(b-b

c)c,(a,for triang ,10 ,)(



−+

w

wwaca
 

11.3.2.7. Triangle(a,b,c) Distribution 

The general triangular distribution has pdf  

 

Figure 11-2. Triangle(a,b,c) PDF 

with functional form: 
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(29)
















−−

−


−−

−

=

otherwise,0

,
))((

)(2

,
))((

)(2

)( byc
cbab

yb

cya
acab

ay

yf X  

The cdf is easily found to be: 

(30)


















−−

−
−


−−

−



=
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cya
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ay

yFX

,1

,
))((
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1
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,0
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2

. 

The inverse cdf is therefore: 

(31)









−

−
−−−−

−

−
−−+

=−

1,))()(1(

0,))((
)(1

w
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cbabwb
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wF
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The Inverse Transform Method is therefore: 

(32)

))()(1(Return     

Else

))((Return      

)/()(( If

)1,0(~ Generate

cbabUb

acabUa

abacU

UnU

−−−−

−−+

−−

 

11.3.2.8. Bernoulli(p) Distribution 

The Inverse Transform Method can be applied to discrete distributions as long as the 

functional form of the inverse cdf is defined carefully. The cdf for the Bernoulli distribution is 

(33)










−



=

1,1

1y0.1

0,0

)(

y

p

y

yFX . 

The inverse cdf is found by applying Equation (5); for 10  w : 

(34)




−

−
=−

11,1

10,0
)(1

wp

pw
wFX . 

The method is therefore: 
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(35)

1Return     

Else

0Return     

1 If

)1,0(~ Generate

pU

UnU

−

 

11.3.2.9. Geometric(p) Distribution 

The Geometric distribution arises from a sequence of Bernoulli trials. The variable itself 

is the number trials until a ‘1’ is generated. The cdf is given by: 

(36)
 







−−
=

00

0)1(1
)(

y

yp
yF

y

X , 

where  y is the larger integer ≤ y. The inverse cdf is therefore given by: 

(37) 








−

−
=−

)1ln(

)1ln(
)(1

p

w
wFX , 

where  z is the smallest integer ≥ z. The inverse transform method for generating a 

Geometric(p) random variate is therefore: 

(38)









−

−

)1ln(

)1ln(
Return 

)1,0(~ Generate

p

U

UnU

. 

11.3.3. General Discrete Distributions 

In general, for a discrete probability distribution with mass function given by 

(39) SyyXypX == },Pr{)(  

where S is the set of possible values of X (which need not necessarily be integers). 

The cdf is given by 

(40) 


=
}:{

)()(
yzSx

XX zpyF  

And the inverse cdf is therefore 

(41)








= 


−

}:{

1 )(:min)(
yzSz

XX wzpSywF . 

If the elements or S are specified by },{ ,10 yyS = where  10 yy  and S can be 

either finite or infinite, then the inverse cdf can be given as 
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(42)








= 
=

−

=

−
J

i

iX

J

i

iXJX ypwypSywF
0

1

0

1 )()(:)( . 

The form of the inverse cdf in (42)(42) can be used for a generic inverse transform 

method for discrete random variates. 

11.3.4. Functions of Random Variates 

Functions of random variates can be easily generated by first generating the underlying 

random variates and then applying the function. If ),,( 0 nXXg  is a function of random variates 

nXX ,,0  and it is known how to generate nXX ,,0  , then a method for generating 

),,( 0 nXXg  random variates is as follows: 

(43)
),,(Return 

,, Generate

1

1

n

n

XXg

XX




. 

While this may seem trivial, it is actually quite useful. One common usage is a linear 

transformation of a single random variable, having the effect of “stretching” and “shifting” it. 

Thus, if a method for generating the random variable X is known, then to generate baX + : 

(44)
baX

FX X

+Return 

~ Generate
. 

11.4. Composition Method 

Sometimes a cdf can be expressed as a mixture of other cdf’s, which are typically simpler 

in form. That is, there are cdf’s ,,,
210 XXX FFF  for which there are known algorithms for 

generation, and a set of non-negative values ,210 ,, ppp with 1=i ip for which, 

(45) =
i

XiX yFpyF
i

)()( . 

The strategy is then to choose one of the distributions by selecting an index at random 

and then generating a single variate from the chosen distribution. 

The typical use when devising a method to generate from a given distribution might be 

more accurately called “decomposition” because the approach is to decompose a complicated 

distribution into a number of simpler parts. In order to do that, both the distributions XF and the 

weights ip must be found. When the desired distribution is continuous (i.e. has a pdf) then this 

can be accomplished by “slicing” the pdf into various pieces. Each piece must be then 

proportional to a pdf with a known method for generation. By differentiating (45), in the case of 

a continuous distribution the decomposition can be written: 

(46) =
i

XiX yfpyf
i

)()(  

where ,,
10 XX ff are the respective pdf’s. 
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11.4.1. The Method 

The general composition method is therefore shown in (47): 

(47)

Y

FY

piII

IX

i

Return 

 cdf  toaccording  Generate

}Pr{ with index  Generate ==

 

Note that only one of the various cdf’s is generated from each time the algorithm is 

executed. Also, most of the examples will involve continuous distributions, so the pdf will 

typically be used instead of the cdf. Also, note that the composition method will always require 

at least two uniform random variates – one to be used to choose the index and another to 

generate from the selected distribution itself. Depending on the exact method used, of course, 

more uniform variates may be needed. 

Also, it turns out that often the exact functional form of the desired distribution is not 

necessary, as long as the component distributions are readily identified from their shape. 

The most common use of the Composition method is in conjunction with the 

Acceptance/Rejection method, described in the following section. However, to illustrate the 

technique, it is useful to give some examples. 

11.4.2. Examples 

11.4.2.1. Mixture of Two Uniforms 

Consider the following pdf: 

(48)


















=

Otherwise0

43
4

1

31
8

3

)( y

y

yf X . 

This can be seen to be a mixture of a Un(1,3) random variable (with probability ¾) and a 

Un(3,4) random variable with probability ¼. Therefore, a composition method is as follows. 

(49)

U

U

V

UnVU

+

+



3Return     

Else

21Return     

4/3 if

ntly)(independe )1,0(~., Generate

 

Note that another decomposition is given by a Un(1,4) with probability ¾ and Un(1.3) 

with probability ¼. For that decomposition, the method is: 
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(50)

U

U

V

UnVU

21Return     

Else

31Return     

4/3 if

ntly)(independe )1,0(~., Generate

+

+



 

11.4.2.2. Triangle(a,b,c) by Composition 

The general triangle(a,b,c) distribution can be generated by decomposing the pdf into a 

right triangle (triangle(a,c,c)) and a left triangle (triangle(c,b,c)), as shown in Figure 11-3. 

 

Figure 11-3. Triangle(a,b,c) PDF 

To find the p0, note that the height of the pdf is )/(2 ab − so that )/(()(0 abacp −−= . 

Utilizing the inverse transform method for each piece, the method is:6 

(51)

Ucbb

Uaca

ab

ac
V

UnVU

−−−

−+

−

−


1)(Return     

Else

)(Return     

 If

)1,0(~, Generate

. 

In this case the method is superfluous given the existence of an inverse transform method 

for the same random variable. However, it is a useful example of how a “complicated” pdf can 

be sliced into simpler ones. 

11.4.2.3. Right Wedge(a,b,h) 

A right wedge (a,b,h) distribution has a pdf shown in Figure 11-4.7 The pfd has been 

decomposed into Un(a,b) and a triangle(a,b,b) variates.  

 
6 U and V are independently generated. 
7 The parameter h is the height of the short side. 

a c b

p0 p1 = 1 – p0
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Figure 11-4. Right Wedge PDF8 

The weights for the two pieces are easily determined by simple geometry. The method 

immediately is seen to be 

(52)

Uaba

Uaba

abhV

UnVU

)(Return     

Else

)(Return     

)( If

)1,0(~, Generate

−+

−+

−

 

Note that the triangle density is not given by the part that is “hanging” at height h, but 

rather is obtained by first dropping the function down to the horizontal axis after removing the 

rectangle (like the game of Tetris). In general, the shape of the pdf obtained from a piece of the 

original pdf requires a similar “dropping down.” The “slice” need not be horizontal or vertical. 

For example, the right wedge variate can be decomposed as two triangle distributions by an 

angled “cut,” as shown in Figure 11-5. 

 
8 Note that only the heavy line is the actual pdf; the thin lines are just for clarity. Note also that h < 1/(b-a) in order 

for Figure 11-4 to be an accurate depiction of the pdf. 

ba

h

h(b – a)

1 - h(b – a)
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Figure 11-5. Another Decomposition of the Right Wedge 

The fact that one piece is a triangle(a,b,a) with probability 2/)( abh − is evident from the 

geometry of Figure 11-5. When that piece is removed, the graph may be thought to look 

something like Figure 11-6. 

 

Figure 11-6. Right Wedge with Left Triangle “Removed” 

 However, the graph in Figure 11-6  the remainder of the original pdf is not the graph of a 

function, since there is nothing corresponding to having pieces “missing” below it. To adjust the 

remainder requires “dropping” the triangle in Figure 11-6 until it “sits” on the horizontal axis. 

The result is proportional to a triangle(a,b,b) pdf, as shown in Figure 11-7. 

ba

h

h(b – a)/2

1 - h(b – a)/2

ba

h

1 - h(b – a)/2
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Figure 11-7. Proportional to Triangle (a,b,b) –  

After Removal of Left Triangle and “Dropped” to Horizontal Axis 

Note that the unscaled “remainder” in Figure 11-7 is not a pdf because its area is 

1)(1 −− abh . However, when divided by this quantity, the result is the triangle(a,b,b) pdf. 

Since the shape of the two pdf are recognized and there are methods to generate from each, the 

respective areas of the pieces can be used as the corresponding weights. The second method for 

generating from the wedge is therefore: 

(53)

Uabb

Uaba

abhV

UnVU

−−−

−+

−

1)(Return     

Else

)(Return         

2/)( If

)1,0(~, Generate

. 

This example is for illustrative purposes, since the method in (53) requires more 

expensive computations than the one in (52). Specifically, for the method in (52), with 

probability )( abh − the computation of a square root is not required, whereas in (53) a square 

root must be computed regardless. 

11.4.2.4. Laplace (β) Distribution 

The Laplace(β) distribution is a double-sided exponential random variable. Its pdf is 

given by: 

(54) −=
−

yeyf
y

X ,
2

)(
/ 


. 

A graph of the pdf is shown in Figure 11-8. 

ba
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Figure 11-8. Graph of Laplace pdf 

Note that the left piece of the pdf is proportional to the pdf for –X, where )Exp(~ X , 

so the Laplace(β) distribution is seen as a mixture of an Exp(β) and –Exp(β) with equal 

probabilities (that is, 2/110 == pp ). The method is therefore,9 

(55)

)ln(Return     

Else

)ln(Return     

2/1 If

)1,0(~, Generate

U

U

V

UnVU



−



. 

 
9 Or 1-U could be used instead. 
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11.5. Acceptance/Rejection Method 

Often the desired distribution cannot be inverted or decomposed into parts that can be 

generated. In those situations, the Acceptance/Rejection method can often be applied. 

11.5.1. The Method 

Suppose there is a function )( yt that 

• Majorizes )(yf X - that is, )()( ytyf X  for all y. 

• Has finite area – that is, =


−
cdyyt )(  

• Is proportional to a pdf from which we can generate. That is, there is a known method for 

generating random variates having pdf 
c

yt )(
. 

Then the following method produces a random variate with pdf )(yf X : 

7. Generate Y having pdf 
c

yt )(
 

8. Generate )1,0(~ UnU  

9. If 
)(

)(

Yt

Yf
U X Return (accept) Y; Else discard (reject) Y and repeat from step 1. 

An alternative way of describing the method that is more amenable to an indefinite 

control flow is: 

do { 

    Generate Y having pdf 
c

yt )(
 

    Generate )1,0(~ UnU  

} while 









)(

)(

Yt

Yf
U X

 

Return Y 

Note that the probability of accepting in any give iteration is c/1 where c is the area 

under the majoring function t(y). This value can be considered a measure of how a given 

algorithm exploits the uniform random numbers used and is sometimes called the efficiency of 

the method. 
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11.5.2. Examples 

11.5.2.1. Beta (3,1) 

The Beta (3.1) distribution has pdf 

(56)


 

=
Otherwise0

103
)(

2 yy
yf X  

A majorizing function is  

(57)


 

=
Otherwise0

103
)(

y
yt  

 

Figure 11-9. Beta (3,1) with Uniform Majorizing Function 

The majorizing function is proportional to a Un (0,1) pdf, and the area c = 3. The ratio of 

the two functions is: 

(58) 10,
3

3

)(

)( 2
2

== yy
y

yt

yf X , 

so an acceptance/rejection method for generating from the Beta (3,1) distribution is 

therefore: 

(59)

Y

YU

UnYU

Return 

)(  while}

)1,0(~, Generate    

{ do

2
 

The efficiency of this method is 1/3; that is, 2/3 of the generated random variates will be 

rejected. This is an extremely low efficiency, and Figure 11-9 suggests that the reason is the 

large amount of area between the pdf and the majorizing function. This also suggests an alternate 

0

1

2

3

0 0.5 1
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majorizing function that more closely matches the overall shape of the pdf. One such function is 

a triangle, shown in Figure 11-10. 

 

Figure 11-10. Beta(3,1) with Triangle Majorizing Function 

The majorizing function Now the generated variate will be from a triang(0,1,1) 

distribution. The ratio of the functions in Figure 11-10 is 

(60) 10,
3

3

)(

)( 2

== yy
y

y

yt

yf X  

So an acceptance/rejection method based on this majorizing function is 

(61)

Y

YU

VY

UnVU

Return 

)(  while}

Set     

)1,0(~, Generate    

{ do



= . 

Alternatively, the following method is equivalent and slightly faster, since it replaces the 

relatively expensive square root with a square and only computes the square root when there is 

acceptance: 

(62)

Y

YU

UnYU

Return 

)(  while}

)1,0(~, Generate    

{ do

2 
 

The area under the majoring function is 3/2, so efficiency of the method is 2/3, a 

considerable improvement over the first one. 

0

1

2

3

0 0.5 1
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11.5.2.2. Triangle(a,b,c) 

Applying the Acceptance/Rejection method to the triangle(a,b,c) pdf, a natural 

majorizing function is: 

(63)









−=

Otherwise0

2

)(
bya

abyt  

(see Figure 11-11). 

 

Figure 11-11. Triangle(a,b,c) with Uniform Majorizing Function 

The ratio of the pdf to the majorizing function is: 

(64)















−

−


−

−

=

Otherwise0
)(

)(
byc

cb

yb

cya
ac

ay

yt

yf X
. 

The method is therefore: 

(65)

Y

cbYbUcY

acaYUcY

VabaY

UnVU

Return 

))/()(&            

||)/()(& (  while}

)(Set     

)1,0(~, Generate    

{ do

−−

−−

−+=
 

The area under the majorizing function is 2, so the efficiency is ½. 

11.5.2.3. Beta (2,2) 

The Beta (2,2) distribution has pdf  

(66)


 −

=
Otherwise0

10)1(6
)(

yyy
yf X  

a c b
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Although the cdf can be determined in closed form, it is in the form of a cubic, the 

inversion of which is possible but extremely messy. Thus, Acceptance/Rejection is a reasonable 

approach because Inverse Transform is not practical. For Beta with higher valued parameters it is 

not even possible to determine the cdf in closed form. 

Since the pdf achieves its maximum of 1.5 at y=0.5, a majorizing function of  

(67)


 

=
Otherwise0

105.1
)(

y
yt  

is a natural one (see Figure 11-12). 

 

Figure 11-12. Beta(2,2) with Uniform Majorizing Function 

The ratio is  

(68)


 −

=
Otherwise0

10)1(4

)(

)( yyy

yt

yf X
. 

The method is therefore: 

(69)

Y

YYU

UnYU

Return 

))1(4(  while}

)1,0(~, Generate    

{ do

−
 

The area under t(y) is 3/2, leading to an efficiency of 2/3. This leads to the question of 

whether it can be improved. Consider a majorizing function that is a trapezoid, as shown in 

Figure 11-13. 

0

0.5

1

1.5

0 0.5 1
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Figure 11-13. Beta(2,2) with Trapezoid Majorizing Function 

The majorizing function is given by 

(70)













−





=

Otherwise0

175.0)1(6

75.025.05.1

25.006

)(
yy

y

yy

yt  

And the ratio is 

(71)















−

−

=

Otherwise0

175.0

75.025.0)1(4

25.001

)(

)(

yy

yyy

yy

yt

yf X  

The composition method will be used to generate the “candidate” random variate Y. First 

the majorizing function needs to be rescaled to be a pdf (i.e. have area of 1). The areas under the 

three parts of the majorizing function are shown in Figure 11-14. 

 

Figure 11-14. Majorizing Function Areas 
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We see from Figure 11-14 that the total area is 
8

9

16

18

16

3

4

3

16

3
==++ , so the efficiency is 

seen to be 889.0
9

8
 . Furthermore, the corresponding pdf and the weights can be determined by 

dividing each area of the majorizing function by the total area. The result is shown in Figure 

11-15. 

 

Figure 11-15. Trapezoid pdf – Scaled to Area of 1 

It is thus seen that the trapezoid pdf is a mixture of triang(0,1/4,1/4) with probability 1/6, 

Uniform(1/4,3/4) with probability 2/3, and triangle(3/4,1,3/4) with probability 1/6. 

Finally, it is noted that the order of generating the pieces can be arbitrarily set, and it is 

sometimes recommended that it be done in order of decreasing probabilities.  

The method is therefore: 

(72)

Y

YUY

YYUY

Y &U.Y

VY

VY

W

VY

W

UnWVU

Return 

))&75.0(            

||))1(4&75.025.0(            

||)1250( (  while}

1
4

1
1        

Else    

4

1
        

6/5 if Else    

2

1

4

1
        

3/2 If    

)1,0(~,, Generate    

{ do



−

−

−−=

=



+=


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11.5.2.4. Normal (0,1) 

The Normal distribution is perhaps the most commonly used probability model. If Z is a 

Normal (0,1), then Z + Normal(μ,σ2) random variable. Therefore, if a way to generate a 

Normal (0,1) is found, then a Normal with any mean and variance can be obtained by this linear 

transform. The pdf for a standard Normal (with mean 0 and variance 1) is: 

(73) −= − yeyf x

Z ,
2

1
)( 2/2


 

Majorizing functions with a finite range, as have been dealt with so far, cannot be used 

for distributions with tails, such as the Normal distribution. However, it turns out that the 

Laplace distribution with parameter 1, described previously for general β, can have its pdf be 

scaled to majorize the Normal (0,1) pdf. That majorizing function is given by: 

(74) −=
+−

yeyt
y

,
2

1
)(

2/1


. 

A graph of this function majoring the Normal pdf is shown in Figure 11-16. 

 

Figure 11-16, N(0,1) with Laplace Majorizing Function 

The ratio )(/)( ytyfZ is seen to be: 

(75)

22
2

)1(
2

1
)12(

2

1

2

1

2/

)(

)( −−+−−

+−

−

===
yyy

y

y

Z ee

e

e

yt

yf
. 

The Composition method developed previously can be used to generate Laplace random 

variates for the Acceptance/Rejection method. The overall method is as follows. 
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(76)

Y

eU

VY

VY

W

UnWVU

Y

Return 

)(  while}

ln        

Else    

ln        

2/1 if    

)1,0(~,, Generate    

{ do

2)1(
2

1
−−



=

−=



 

The area under the majorizing function is 315.1
2




e
 so the efficiency is given by

760.0
2


e


.  

This raises the question of whether the efficiency can be improved. Examination of 

Figure 11-16 indicates that the portion of the majorizing function in the region of 0 is high 

relative to the pdf, meaning that a larger proportion of generated values with small absolute value 

are being rejected. One remedy is to truncate the majorizing function for those values. This 

results in a majorizing function that is constant for values y with 1y , resulting in Figure 11-17 

 

Figure 11-17. N(0,1) with Truncated Laplace Majorizing Function 

The functional form of this majorizing function is 

(77)
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(78)













=

−−

−

2

1
2

1

)(

)(
2

2

)1(
2

1

2

1
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ye

yt

yf

y

y

Z . 

The area under the majorizing function in Figure 11-17 is 

197.1
2

3

2

1

2

1

2

1
=++


so the efficiency is 836.0

3

2



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12. Implementing and Using Random Variates in Simkit 

This section will illustrate how random variates are implemented in Simkit as well as to 

demonstrate how to implement new random variates and use them as “first-class citizens” in 

simulation components. 

12.1. Implementing Random Numbers 

Simkit captures basic source of pseudo-randomness in classes that implement the 

RandomNumber interface. The “default” RandomNumber algorithm is the Mersenne Twister, 

and there are a number of other standard algorithms implemented in different classes, such as the 

Tausworthe, linear congruential, and others. 

12.2. Implementing Random Variates 

Simkit captures the generation of different probability distributions through an interface 

(RandomVariate) and abstract base class (RandomVariateBase), as shown in Figure 

12-1, which shows two concrete classed (ExponentialVariate and GammaVariate) in 

the hierarchy. 

 

Figure 12-1. Class and Interface Diagram for RandomVariates 

Concrete classes can either implement the RandomVariate interface or subclass 

RandomVariateBase. In addition to implementing the methods of the RandomVariate 

contract, concrete classes must implement necessary parameters as read/write, using the Java 

generate(): double
setParameters(): void
getParameters(): Object[]
setRandomNumber(): void
getRandomNumber(): RandomNumber

<<interface>>
RandomVariate

setRandomNumber : void
getRandomNumber(): RandomNumber()

rng: RandomNumber
RandomVariateBase

generate(): double
setParameters(): void
getParameters(): Object[]
setMean(): double
getMean(): double

alpha: double
beta: double

GammaVariate

generate(): double
setParameters(): void
getParameters(): Object[]
setMean(): double
getMean(): double

mean: double
ExponentialVariate
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conventions for setters and getters. Finally, they are expected to adhere to the JavaBeans 

standard of providing a zero-parameter constructor. 

The “normal” way of obtaining a RandomVariate instance is through a static method 

call to RandomVariateFactory.getInstance(String, Object...). The first 

argument is the name of the RandomVariate class, which may be the fully qualified name, 

the unqualified name (if the class is either in the simkit.random package or in one of the 

designated search packages), or the name without “Variate”. The convention is that a 

RandomVariate class’s name end in “Variate” but that is not required. 

When obtained from a call to RandomVariateFactory.getInstance(), the 

object is instantiated using the zero-argument constructor and the RandomNumber instance set 

using the RandomVariateFactory’s default RandomNumber instance. Finally, the 

parameters are set using the corresponding setter methods. If the RandomVariateFactory  

cannot find the name of a class from the first argument, it throws an 

IllegalArgumentException. By default, The RandomVariateFactory only 

searches the simkit.random package for the class. However, additional packages may be 

added by invoking addSearchPackage(String).  For example, to allow unqualified class 

names from the mv3302.random package, invoke 

RandomVariateFactory.addSearchPackage("mv3302.random"). 

The RandomVariateFactory uses the same RandomNumber instance for each 

RandomVariate class obtained using the getInstance() call above This ensures that all 

generated values will be independent. This behavior may be overridden by specifying a different 

RandomNumber instance via an overloaded call getInstance(String, 

RandomNumber, Object...). 
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13. Simple Output Analysis 

Output analysis for a simulation model consists of attempting to estimate certain 

measures associated with the system being modeled. This is done by estimating measures 

obtained from the simulation model. If the model is a faithful representation of the system in 

question, then valid estimates of the simulation measures may be inferred to be representative of 

the corresponding measures in the system itself. 

In this section we will explore the simplest version of output analysis, namely estimating 

a single parameter of the simulation model. This parameter is some fixed, but unknown quantity 

of the model. For simplicity, we will only examine estimating parameters that are means. 

In statistics the two primary estimators are point estimators and interval estimators. 

Simulation models allow for a third possibility, interval estimators with a desired level of 

precision. 

Statistical analysis typically starts with a random sample from the population in question. 

This random sample is assumed to be independent and identically distributed (iid). 

Unfortunately, most raw simulation output data are not iid, so the typical estimators cannot be 

blindly applied. 

As an example of the non-iid nature of raw simulation data, consider the sequence of 

delays in queue for customers in a multiple server queueing system with k servers. At the start of 

the simulation replication, the system is empty and idle. The delay in queue for the first k 

customers will always be exactly 0. Thus, the distribution of the first k delays in queue is 

constant with a value of 0. The delay in the queue for customer k+1 is also 0 if that customer 

arrives after the completion of at least one service and is greater than 0 if none of the first k 

customers have completed service when the k+1st customer arrives. Therefore, the expected 

delay in queue for the k+1st customer is greater than 0: 

(80)E Dk+1[ ] = E min tA1
+ tS1 ...tAk + tSk( ) - tAk+1

tAk+1
< min tA1

+ tS1 ...tAk + tSk( )é
ë

ù
û

> 0 , 

where {tAi}are the interarrival times, {tSi}are the service times, and {Di}  are the 

successive delays in queue. Similarly, the expected delay in queue for the k+2nd customer is 

different, and so forth. So the sequence of delays in queue {Di} is not identically distributed. If 

the system has a steady state and is run long enough, however, we expect that the distribution of 

successive delays in queue would be approximately the same. 

However, even in that case, successive delays in queue are not independent. To illustrate 

this, consider a delay in queue Dnthat is longer than “average.” The chances are that the next 

delay in queue Dn+1
will also be larger than average, since customer n+1 will have spent some 

time waiting just behind customer n. Similarly, if customer n has a smaller than average delay in 

queue, the chances are that customer n+1 will also have a smaller than average delay in queue. 

Thus, intuitively at least, the sequence of delays in queue {Di}  are correlated. 

13.1. Terminating and Non-Terminating Simulations 

For our purposes, there are two types of simulations: terminating and non-terminating.  
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A terminating simulation is one in which there is a natural event or ending criterion for a 

replication. One example is a combat model in which the first side to reach a certain casualty 

level is declared to have “lost” the battle. Another might be that an objective has been reached by 

a certain point in time. A bank might open at 9:00 am and close at 5:00 pm each day. For each of 

these situations the terminating event is built into the situation. The terminating event might be 

an artificial one imposed by the analyst. For example, the measure of interest might be for the 

first 1000 customers arriving to the system. 

A key property of measures of terminating simulations is that the initial conditions 

influence the desired measures, sometimes dramatically. Even if the system in question could 

potentially reach steady state, the analysis considers all the data from the beginning.  

A non-terminating simulation is one for which there is no natural terminating event. For 

non-terminating simulations, steady state measures are of interest. For example, the steady state 

expected delay in queue for a multiple server queueing system might be of interest. 

The distinguishing characteristic of a steady state measure is that the initial conditions do 

not affect its value. Therefore, any influence of the initial conditions will bias the results, which 

is why this phenomenon is known as initialization bias. 

Analyzing the output of simulation models is a rich and broad area, and in this note we 

are only able to dip our toes in it. For more about output analysis, consult a standard simulation 

text, such as Law and Kelton (2000) or Banks, Carson, and Nelson (1996). 

13.2. Estimating a Mean Measure for a Terminating Simulation 

For terminating simulations, the execution of the runs and corresponding analysis is 

simple and straightforward. A number of independent replications are performed using identical 

starting conditions, and the desired measure from each run either stored or accumulated. Since 

the standard statistical assumptions (iid) for these data apply, the resulting estimator can be 

found in the traditional manner. For example, to estimate a mean, a 100(1 - α)% confidence 

interval can be determined by the standard approach. Specifically, if 1 2{ , , , }nX X X are the 

results of n replications of the simulation, an approximate 100(1-α)% confidence interval is 

 

1,1 /2X n
n n

S
t

n
− −

, (1) 

where Xn is the sample average of the n replications, nS is the sample standard deviation 

of the n replications, and 1,1 /2nt − − is the (1 – α/2)th percentile of the Student-t distribution. This of 

course assumed that n is sufficiently large for the Central Limit Theorem to be appropriate. 

Often the quantities iX  from the runs are themselves averages, such as the average delay 

in the queue, so that Xn is an average of averages. 

The challenge for terminating simulations lies not so much in the runs and estimation, but 

in defining exactly what it is being estimated. Typically, the individual data point from a 
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replication is an average, as noted above, but the quantities being averaged are not identically 

distributed. This leads to the question, what is being estimated by this? 

To continue the example of delay in queue for a terminating simulation, the raw data for 

each replication are the successive delays for each customer. The average of these over a 

replication is an observation therefore of the expected average delay in queue over the 

replication. Alternatively, the output of a combat model might be simply 1 if the Blue side 

“wins” and 0 if they lose. In that case, the computed confidence interval is an estimate of the 

probability that Blue wins the battle. 

13.3. Estimating a Mean Measure for a Simulation in Steady State 

As mentioned above, a steady-state mean parameter is more straightforward to define, 

being a single quantity. For example, the steady state mean delay in queue is a single number. 

However, obtaining good estimates of that number are more problematic due to two factors: 

initialization bias and auto-correlation. 

In general, statistical bias occurs when an observation’s expected value does not equal the 

quantity it is being used to estimate. Initialization bias exists in most simulations because it is 

typically not started in steady-state, and therefore the expected value of the initial observations 

does not equal the steady-state parameter. 

For example, Figure 13-1 shows the difference between the steady-state mean μ and the 

time-varying value μ(t). The initial observations of μ(t) would be biased for μ. 

  

Figure 13-1. Initialization Bias10 

 
10 Note that this graph is notional, and that there and many different possible ways initial bias can manifest.  
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An example of the running mean output for a simulation over several replications is 

shown in Figure 13-2 below. 

 

Figure 13-2. Running Average of Time in System 

For each observation in the initial transient region, more and more observations will 

result in more and more accurate estimates of the wrong quantity. In general, there is little 

relationship between the initial observations and the steady-state values. Therefore, the common 

approach is to “warm up” the simulation for a period of time and then “truncate” – meaning that 

the statistics for the initial warm-up period are discarded, and the remaining observations used to 

construct the estimate of μ. 

Obtaining the truncation point rigorously is quite a challenge, and most approaches are 

rather ad hoc; following either a simple or complicated approach, the means are plotted and the 

truncation point selected based on whether the result has appeared to converge. In this example, 

if more observations are taken, the resulting graph (Figure 13-3) suggests that 10,000 

observations is a reasonable warm up period. 
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Figure 13-3. Determining Truncation Point 

After the truncation point, data are collected and used to estimate the steady-state 

parameter. Choosing the number of observations after the truncation point is also an ad hoc 

choice. In this example, 10,000 additional observations were taken after the truncation point for 

four replications, resulting in the following Figure 13-4. The resulting replications all seem to 

settle very close to a single value. 

 

Figure 13-4. Successive Observations After Truncation Point 
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Effectively, the warm-up period with truncation amounts to selecting an initial state that 

is from the steady-state distribution, assuming that the truncation point is sufficiently large so 

that the simulation is indeed in steady state. In order to produce a confidence interval, the most 

straightforward approach is to consider each replication as one observation, and repeat the entire 

process (warm-up, truncation, follow-on observations) as many times as desired. This indeed 

results in iid observations and, assuming that indeed steady state has been reached, is unbiased 

for the steady state mean of interest. This approach is known as “replication/deletion” (Law and 

Kelton, 2000). 

An example of how the confidence intervals behave using the replication/deletion 

approach is shown in Figure 13-5. 

 

Figure 13-5. Replication/Deletion Confidence Intervals 

The scale in Figure 13-5 has been shrunk to emphasize the small size of the confidence 

interval. For this particular model, it turns out that the parameters chosen for the experiments 

have resulted in an accurate estimate of the steady-state mean. In this case, the final confidence 

interval using 100 replications is 3.269±0.002. For other models, these values might not be 

sufficient to get an accurate estimate. 

13.4. Specifying Precision 

In general, a problem with fixed-sample methods for constructing confidence intervals is 

that the analyst has no control over the size of the half width. More precisely, it may be desired 

that the estimator have a predetermined level of precision. That is, the accuracy of the estimate is 

whatever it is, and it may not be sufficient. There are two similar approaches that can address 

this issue depending on whether the desired precision is absolute or relative. With stochastic 

models, of course, this cannot be stated with certainty but with “confidence.”  
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Suppose it is desired that the estimator have a given absolute precision 𝛽 with a given 

level of confidence 100(1 − 𝛼)%. That is, we can make a confidence statement to the effect 

“|𝑋̅(𝑛) < 𝛽| with confidence 100(1 − 𝛼).” Then the following procedure produces an estimator 

of the (transient) mean with the desired criteria: 

Let 𝑛 = 0 

do { 

Let 𝑛 = 𝑛 + 1 

Perform independent replication 𝑛. 

 Compute 𝑋̅(𝑛) and halfwidth ℎ(𝑛, 𝛼) = √𝑆2(𝑛)𝑡𝑛−1,1−𝛼/2/𝑛 

} while (ℎ(𝑛, 𝛼) < 𝛽)) 

return 𝑋̅(𝑛) 

Here, 𝑡𝑛−1,1−𝛼/2 is the quantile of the Student t distribution. 

Care should be taken that the Central Limit theorem applies. A standard rule of thumb is 

to ensure that at least 30 independent replications are executed. 

While a very intuitive result, the proof that this indeed gives the desired precisian with 

the given confidence under relatively mild assumptions is quite involved. See Law & Kelton 

(2000) for details. 
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