

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

REPEATABLE UNIT TESTING OF DISTRIBUTED
INTERACTIVE SIMULATION (DIS) PROTOCOL
BEHAVIOR STREAMS USING WEB STANDARDS

by

Tobias Brennenstuhl

June 2020

Thesis Advisor: Don Brutzman
Second Reader: Terry D. Norbraten

Research for this thesis was performed at the MOVES Institute.
Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2020 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
REPEATABLE UNIT TESTING OF DISTRIBUTED INTERACTIVE
SIMULATION (DIS) PROTOCOL BEHAVIOR STREAMS USING WEB
STANDARDS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Tobias Brennenstuhl

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The IEEE Distributed Interactive Simulation (DIS) protocol is used for high-fidelity real-time information
sharing among simulations and trainers across the entire international Modeling and Simulation (M&S)
community. If archivally saved and replayed, DIS streams have the potential to become a valuable source of Big
Data. The availability of archived prerecorded behavior streams for replay, adaptation, and analysis can benefit an
immense variety of application areas. The computer science principle “a stream is a stream” indicates that data in
motion is equivalent to data at rest. This characteristic can enable powerful capabilities for DIS.
 This thesis presents prototypes to demonstrate how various forms of repeatability are key to gaining
improved benefits from DIS stream analysis. Unit testing of DIS behavior streams allows confirmation of both
repeatability and correctness when testing all manner of applications, exercises, simulations, and training sessions.
A related use case is automated after-action review (AAR) from recorded DIS streams. This thesis also shows
how a DIS stream is converted into autogenerated code that can animate an X3D Graphics model. Many obstacles
were overcome during this work, and so various best practices are provided. Of note is that unit testing might even
become a contract requirement for incrementally developing and stably maintaining Live Virtual Constructive
(LVC) code bases. This progress provides many opportunities for future work.

 14. SUBJECT TERMS
distributed interactive simulation, modeling and simulation, behavior streams, unit testing,
X3D

 15. NUMBER OF
PAGES
 171
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

REPEATABLE UNIT TESTING OF DISTRIBUTED INTERACTIVE
SIMULATION (DIS) PROTOCOL BEHAVIOR STREAMS USING WEB

STANDARDS

Tobias Brennenstuhl
Lieutenant Colonel, German Army

EE, University of the German Armed Forces, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS, AND
SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
June 2020

Approved by: Don Brutzman
 Advisor

 Terry D. Norbraten
 Second Reader

 Peter J. Denning
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The IEEE Distributed Interactive Simulation (DIS) protocol is used for

high-fidelity real-time information sharing among simulations and trainers across the

entire international Modeling and Simulation (M&S) community. If archivally saved and

replayed, DIS streams have the potential to become a valuable source of Big Data. The

availability of archived prerecorded behavior streams for replay, adaptation, and analysis

can benefit an immense variety of application areas. The computer science principle “a

stream is a stream” indicates that data in motion is equivalent to data at rest. This

characteristic can enable powerful capabilities for DIS.

 This thesis presents prototypes to demonstrate how various forms of repeatability

are key to gaining improved benefits from DIS stream analysis. Unit testing of DIS

behavior streams allows confirmation of both repeatability and correctness when testing

all manner of applications, exercises, simulations, and training sessions. A related use

case is automated after-action review (AAR) from recorded DIS streams. This thesis also

shows how a DIS stream is converted into autogenerated code that can animate an X3D

Graphics model. Many obstacles were overcome during this work, and so various best

practices are provided. Of note is that unit testing might even become a contract

requirement for incrementally developing and stably maintaining Live Virtual

Constructive (LVC) code bases. This progress provides many opportunities for future

work.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW ...1
B. CURRENT CAPABILITIES AND LIMITATIONS2
C. PROBLEM STATEMENT ...3
D. SPECIAL DEFINITIONS ...4

1. “Repeatable” ..4
2. “Compression” ...5

E. MOTIVATING USE CASES ..5
1. Software Assessment ..5
2. Software Testing...5
3. Simulation Analysis ...6

F. BIG DATA ..6
G. ORGANIZATION OF THIS THESIS ...8

II. RELATED WORK ..9
A. WEB STANDARDS ...9
B. 3D MODELING ...9

1. Software for X3D ...10
2. Comparison of X3D Players ..12
3. X3D TimeSensor Node ..27
4. X3D PositionInterpolator Node ..28
5. X3D OrientationInterpolator Node ..28

C. NETWORKING AND DISTRIBUTED VIRTUAL
ENVIRONMENTS ..29

D. COMMAND AND CONTROL SYSTEM TO SIMULATION
SYSTEM INTEROPERATION (C2SIM) ...30

E. PDU ENCODINGS ..31
F. PROPRIETARY ENCODINGS AND STANDARDIZATION

CONSIDERATIONS ...32

III. SHARED BEHAVIORS IN 3D VIRTUAL ENVIRONMENT (VE)
SIMULATIONS ...33
A. INTRODUCTION..33
B. DISTRIBUTED INTERACTIVE SIMULATION (DIS)33
C. AVAILABLE SOFTWARE ..34

1. OpenDIS7..34
2. Redsim DIS PDU Recorder ...35

viii

3. MAK Data Logger ...36
4. Pitch Cross Domain Security (CDS) Gateway39

D. BASIC ARCHITECTURAL COMPONENTS OF DIS39
1. Entity State PDU (ESPDU) Timestamp Considerations40
2. ESPDU Location ..40
3. Location with Respect to the World ...40
4. Velocity..40
5. Orientation..41
6. Dead Reckoning (DR) ..41
7. World Coordinate System ...42
8. Entity Coordinate System ...43

E. TYPES OF PDUS ...44
F. SPIDERS3D VIRTUAL ENVIRONMENT (VE)46
G. SUMMARY ..47

IV. IMPLEMENTATION AND DEMONSTRATION ..49
A. INTRODUCTION..49
B. CAPTURING DIS PACKETS ..49
C. RECORDING DIS PACKETS ...55

1. Saving Recorded PDUs to Base64 Encoding56
2. Saving Recorded PDUs to a Parsable Plain-Text File56

D. PLAYING BACK DIS PACKETS ...57
E. RECORDING DATA FROM SIMULATIONS58
F. PLAYING BACK RECORDED DIS DATA TO

SIMULATIONS ...62
G. TRANSFORM A PDU STREAM INTO X3D

POSITIONINTERPOLATOR..63
H. CREATE A MATCHING ORIENTATIONINTERPOLATOR71
I. X3D IMPLEMENTATIONS OF PDUS ..73
J. AUTOMATED ANALYSIS OF PDU STREAMS FOR AFTER-

ACTION REVIEW (AAR) ..74
K. SUMMARY ..75

V. TESTING AND TROUBLESHOOTING ..77
A. INTRODUCTION..77
B. CONNECTING TO DIFFERENT TYPES OF NETWORKS77
C. TEST AND EVALUATION OF CONNECTIONS77
D. UNIT TESTING PRINCIPLES AND BEST PRACTICES81
E. QUALITY ASSURANCE (QA) OF PLAYED BACK STREAMS82
F. UNIT TESTING OF SOFTWARE PACKAGE INTEGRITY83

ix

G. TEST FOR NUMBERS OF PACKETS RECEIVED85
H. COMPARATOR FOR DIS STREAMS ..86
I. VERIFICATION, VALIDATION AND ACCREDITATION

(VV&A) FOR LVC APPLICATION AND SCENARIOS89
J. TROUBLESHOOTING ..90

1. Wireshark ...90
2. Test Setup with OpenDis7Examples ..91
3. Firewall Settings ...91
4. AllPduRoundTripTest.java ..91
5. CPU Speed ..92
6. Test Dead Reckoning (DR) ..93

K. FUNDAMENTAL IMPORTANCE OF REPEATABLE
MEASUREMENTS ...96

L. SUMMARY ..97

VI. CONCLUSIONS AND RECOMMENDATIONS ...99
A. CONCLUSIONS ..99
B. RECOMMENDATIONS FOR FUTURE WORK100

APPENDIX A. LIST OF ALL PDUS ...101

APPENDIX B. FIREWALL CONFIGURATION..111

APPENDIX C. SOURCE CODE ..119
A. INTRODUCTION..119
B. PLAYERPLAINTEXT.JAVA ..119
C. RECORDERPLAINTEXT.JAVA ..126
D. SLIDINGWINDOW.JAVA...130
E. COORDINATES.JAVA ..133
F. CREATEX3DINTERPOLATORS.JAVA ...135
G. EXAMPLE OF AUTOGENERATED X3D NODES141

LIST OF REFERENCES ..143

INITIAL DISTRIBUTION LIST ...149

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Entity in VR Forces application following a straight track7

Figure 2. Entity in VR Forces application following a many-sided polygon7

Figure 3. QR code for Hello Germany Model displayed by X_ITE13

Figure 4. FreeWRL default view of Hello Germany scene13

Figure 5. H3DViewer default view of Hello Germany scene14

Figure 6. Instant Reality default view of Hello Germany scene14

Figure 7. Octaga Player default view of Hello Germany scene15

Figure 8. View3DScene default view of Hello Germany scene15

Figure 9. Xj3D default view of Hello Germany scene ..16

Figure 10. Plane crossection view of the X3D model of a ring extrusion17

Figure 11. View3DScene Diagnostic Testing for Extrusions18

Figure 12. Intersecting inner and outer ring of the model leads to incorrectly
formed geometry and erreneous results ...18

Figure 13. Fixed model with open ring as a single convex strip rotated around a
circle ...19

Figure 14. QR code for Olympic Rings URL displayed by X_ITE19

Figure 15. FreeWRL default view of the Olympic Rings scene is correct20

Figure 16. H3D default view of the Olympic Rings scene is erroneous20

Figure 17. Instant Reality default view of the Olympic Rings scene is correct21

Figure 18. Octagon Player default view of the Olympic Rings scene is correct21

Figure 19. View3DScene default view of the Olympic Rings scene is correct22

Figure 20. Xj3D default view of the Olympic Rings scene ..22

Figure 21. FreeWRL default view of the Lighthouse scene is correct24

Figure 22. H3D default view of the Lighthouse scene without beam cone24

xii

Figure 23. Instant Reality default view of the Lighthouse scene without beam
cone ..25

Figure 24. Octaga Player default view of the Lighthouse scene is correct25

Figure 25. View3DScene default view of the Lighthouse scene without beam
cone ..26

Figure 26. Xj3D default view of the Lighthouse scene ...26

Figure 27. Code excerpt for a X3D TimeSensor shows XML encoding of
keyfields in this node ...28

Figure 28. Code excerpt for a X3D PositionInterpolator shows XML encoding
of keyfields in this node ...28

Figure 29. Code excerpt for a X3D OrientationInterpolator shows XML
encoding of keyfields in this node ...29

Figure 30. Option panel of Redsim’s DIS PDU Recorder ..35

Figure 31. MAK Data Logger main window displaying bars and annotations36

Figure 32. PDU Kind filter selection window in MAK Data Logger37

Figure 33. Plain Text output of a DIS PDU recorded by MAK Data Logger38

Figure 34. The “world coordinate system” shows how a geocentric coordinate
system is arranged. Source: IEEE (2012). ...43

Figure 35. Entity coordinate system. Source: IEEE (2012).44

Figure 36. Dialog to select network interface ...50

Figure 37. View of Wireshark in capturing mode ...51

Figure 38. View of text field for filter expression ...51

Figure 39. View of an applied filter for a single IP address ..52

Figure 40. Details of a single DIS PDU packet parsed by Wireshark53

Figure 41. All 72 IEEE DIS PDU types captured with Wireshark54

Figure 42. Recording and play back of PDU streams can occur using different
encodings. Future encoding pairs are straightforward and testable.55

xiii

Figure 43. PDU types 5 – 12 from AllPduSender.java in BASE64 encoding text
characters offering some compression but not plain-text readability56

Figure 44. PDU types 5 – 12 from AllPduSender.java in plain text makes the
values of each received PDU human readable ...57

Figure 45. Wireshark snapshot of PDU types 5 – 12 from Base64 encoded and
unencoded log file ..58

Figure 46. VR Forces Application Simulation Connection Configuration59

Figure 47. PduListenerSaver.java is ready to record PDUs ..60

Figure 48. VR Forces window with status of DIS entities ..60

Figure 49. VR Forces screen with one track and one hostile entity62

Figure 50. Algorithm for creating X3D tracks through PDU filtering64

Figure 51. Code excerpt for a X3D TimeSensor shows XML encoding of
keyfields in this node ...65

Figure 52. Code excerpt for a X3D PositionInterpolator shows XML encoding
of keyfields in this node ...65

Figure 53. UML-diagram for Coordinates.java...68

Figure 54. Flowchart of sliding window algorithm to compute area A69

Figure 55. Heron’s Formula for measuring collinearities. Adapted from
AmBrSoft (2014). ..70

Figure 56. DIS track of an aircraft with 12 PDUs ...71

Figure 57. Compressed DIS track of the aircraft from with 4 PDUs71

Figure 58. A aircraft flying a circle ...72

Figure 59. Replay of an aircraft using a solitary PositionInterpolator72

Figure 60. Replay of an aircraft using a PositionInterpolator and
OrientationInterpolator ..73

Figure 61. Windows Command Prompt command for collecting test statistics78

Figure 62. Sample log file for 10 packets over local WiFi ...79

Figure 63. Windows Command Prompt for infinite packet sending80

xiv

Figure 64. Sample log file for an infinite connection test ...81

Figure 65. MAK Logger Unit Test Steps: Capture stream, play, store, replay,
then perform difference (diff) comparison ..82

Figure 66. UML Diagram for AllPduRoundTripTest.java Comparison. Source:
Schutt (2019). ...84

Figure 67. Status message after a successful run of AllPduRoundTripTest.java84

Figure 68. Status message after an unsuccessful run of
AllPduRoundTripTest.java ..84

Figure 69. Two recorders connected to one simulation to check for differences
in the recorder output ...86

Figure 70. Flow chart for proposed DisStreamComparator.java unit testing
utility class ...88

Figure 71. Flowchart for using VV&A procedures to prove that code for
behavior stream handling is free of errors ...90

Figure 72. One entity with a track of six waypoints containing multiple turns set
up in VR Forces in order to illustrate dead reckoning effects93

Figure 73. Images of DIS run, DIS replay, and DIS replay with DR side by side94

Figure 74. DIS original run of the scenario in Figure 72 ..95

Figure 75. DIS replay of the scenario Figure 72 ...95

Figure 76. DIS replay of the scenario in Figure 72 with network connection
interrupted twice ..95

Figure 77. Network Icon in Windows Taskbar ...111

Figure 78. Network Settings Dialog ..111

Figure 79. Network Status window ...112

Figure 80. Firewall & Network protection window ..112

Figure 81. Windows 10 Defender Firewall window ...113

Figure 82. Windows Defender Firewall Inbound Rules view114

Figure 83. Windows Defender Firewall New Inbound Rule Wizard Type
Selection ...114

xv

Figure 84. Windows Defender Firewall New Inbound Rule Wizard Port
Selection ...115

Figure 85. Windows Defender Firewall New Inbound Rule Wizard Allow/
Block Dialog ..115

Figure 86. Windows Defender Firewall New Inbound Rule Wizard Network
Selection ...116

Figure 87. Windows Defender Firewall New Inbound Rule Wizard Name
Dialog ...117

Figure 88. Windows Defender Firewall Inbound Rules view with new DIS Port
3000 rule ..117

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF TABLES

Table 1. Comparison of player performance for Hello Germany16

Table 2. Comparison of player performance for Olympic Rings23

Table 3. Comparison of player performance for Lighthouse with beam cone27

Table 4. Dead Reckoning formulas. Source: (IEEE, 2012)42

Table 5. Average roundtrip times for tested network connections80

Table 6. Number of PDUs recorded within three minutes for different CPU
types ...92

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

LIST OF ACRONYMS AND ABBREVIATIONS

AAR After Action Review
AR Augmented Reality
C2 Command and Control
C2SIM Command and Control System to Simulation System

Interoperation
CAS Close Air Support
C-BML Coalition Battle Management Language
C-DIS Compressed DIS
CDS Cross Domain Security
COTS Commercial Off The Shelf
CSV Comma Separated Values
DARPA Defense Advanced Research Projects Agency
DIS Distributed Interactive Simulation
ESPDU Entity State Protocol Data Unit
GOTS Government Off The Shelf
HLA High-Level Architecture
HTML Hyper Text Markup Language
i18n Internationalization
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
l10n Localization
LAN Local Area Network
LVC Live, Virtual and Constructive
M&S Modeling and Simulation
MAGTF Marine Air-Ground Task Force
MOTS Military Off The Shelf
MSDL Military Scenario Definition Language
MSG Modeling and Simulation Group
MTWS MAGTF Tactical Warfare Simulation
NPS Naval Postgraduate School
PDU Protocol Data Units
QA Quality Assurance
RNG Random Number Generator

xx

RPR Real-time Platform Reference
SAVAGE Scenario Authoring and Visualization for Advanced Graphical

Environments
TENA Test and Training Enabling Architecture
VE Virtual Environment
VLAN Virtual Local Area Network
VPN Virtual Private Network
VR Virtual Reality
VV&A Verification, Validation and Accreditation
WAN Wide Area Network
X3D Extensible 3D Graphics International Standard
X3DJSAIL X3D Java Scene Access Interface Library
X3DPSAIL X3D Python Scene Access Interface Library
XML Extensible Markup Language

1

I. INTRODUCTION

DIS-emitting simulations and trainers can be found all over the DOD. Using them

to drive co-located simulations and trainers is one possible use case. But recording DIS

streams opens many other use cases that can be applied to DIS streams. Converting DIS

streams that drive entities within simulations that can communicate via DIS into

autogenerated code that can drive other software products is a focus of this research. A DIS

stream is converted into autogenerated code to drive an X3D model using a

PositionInterpolator, an OrientationInterpolator, and a TimeSensor Node.

To achieve autogenerating it is necessary to change code that is already available

within the OpenDIS7 distribution. Because OpenDIS7 is publicly available it must not be

corrupted during the process of code development. One way to achieve this is to use the

concept of unit testing, which will be explained and applied to code written for this thesis.

Helpful troubleshooting for ensuring interoperability between simulation and using

Java classes from the OpenDIS7 distribution is provided to protect the user of this thesis’s

code from frustration.

Within this thesis, “simulation” and “simulation application” are used

synonymously.

A. OVERVIEW

The IEEE Distributed Interactive Simulation (DIS) protocol is used for high-

fidelity real-time information sharing among simulations and trainers across the entire

international Modeling and Simulation (M&S) community. If archivally saved and

replayed, DIS streams have the potential to become a valuable source of Big Data. The

availability of archived prerecorded behavior streams for replay, adaptation and analysis

can benefit an immense variety of application areas. The computer science principle “a

stream is a stream” indicates that data in motion is equivalent to data at rest. This

characteristic can enable powerful capabilities for DIS.

2

This thesis presents prototypes to demonstrate how various forms of repeatability

are key to gaining improved benefits from DIS stream analysis. Unit testing of DIS

behavior streams allows confirmation of both repeatability and correctness when testing

all manner of applications, exercises, simulations, and training sessions. A related use case

is automated after-action review (AAR) from recorded DIS streams. This thesis also shows

how a DIS stream is converted into autogenerated code that can animate an X3D Graphics

model. Many obstacles were overcome during this work, and so various best practices are

provided. Of note is that unit testing might even become a contract requirement for

incrementally developing and stably maintaining Live Virtual Constructive (LVC) code

bases. This progress provides many opportunities for future work.

B. CURRENT CAPABILITIES AND LIMITATIONS

Typically every significant military off-the-shelf (MOTS) simulation

communicates via one of the standards for simulation interoperability: Distributed

Interactive Simulation (DIS), Test and Training Enabling Architecture (TENA) or High-

Level Architecture (HLA). A common characteristic for each is that small data packets are

sent over the network to share the current position and status of simulation entities.

Commercial off-the-shelf (COTS) software is available for purchase or rental under

licensing terms. Government off-the-shelf (GOTS) and MOTS software can be open source

and restricted government produced.

Most of the MOTS simulation can speak more than one standard. Nearly all of them

lack the possibility to record and playback more than their own PDUs. When running more

than one simulation together on one network and recording PDU streams of the whole

simulation a third-party product is necessary (but often not available). In the next chapter,

Related Work, two potential COTS products are introduced. Further information or

licensing considerations is available at the NPS Scenario Authoring and Visualization for

Advanced Graphical Environments (SAVAGE) Research Group Developers Guide

website, in sections “Licensing” and “Free as in Freedom” (NPS Savage Research Group,

n.d.-a).

3

None of the aforementioned products can directly convert a PDU stream to make it

playable over the internet using Web standards like X3D. This thesis demonstrates that

such capabilities are easily achieved.

C. PROBLEM STATEMENT

Modeling and Simulation (M&S) is not relevant to active warfighting unless

interoperability can be achieved between Live, Virtual and Constructive (LVC)

simulations, robot telemetry, and command and control (C2). Therefore, M&S becomes

more relevant when more participants and observers are reached and attracted by the

outcome of simulations or the use of models. These domains have remained “stovepiped”

and disconnected for decades. Common grand opportunities for cross-connected

interoperability at syntactic semantic and functional levels are described in detail by Dr.

Curtis Blais in his NPS dissertation (Blais, 2018).

Utilizing open-source Web technology provides valuable resources that can help

numerous systems regardless of classification of the information streams that they handle.

Such techniques are also useful when it comes to publishing outcomes to a broad range of

participants and observers. A replay of a simulation run can be distributed to many more

computers that are unable to run the simulation software. All that is needed is a converter

that ingests a PDU stream and converts it into a format that is displayable using open-

source Web technology using a Web browser on any personal computer or mobile device.

Once a stream is recorded and stored to a file, it can be analyzed and adapted for

simulations of any kind.

Handling 3D models and streams needs to become as easy as opening a Web

browser of choice and searching for keywords. Installing specialized software to display

3D models is not attractive to the user and raises the bar for enterprise systems to a point,

where the users have no access new techniques because adaption is too complex. This

problem state has repeated for many years (indeed decades) due to a general failure to adopt

repeatable open standards. The combination of repeatable behavior streaming in

combination with searchable authenticating data opens the doors for both LVC-C2

relevance and Big Data techniques for modern data science.

4

D. SPECIAL DEFINITIONS

For this thesis, two words must be defined: repeatable and compression.

1. “Repeatable”

In regards to simulation, the word “repeatable” can be defined in three different

ways. They are important distinctions that are explored in detail in this thesis.

a. Replayable

The simplest definition of “repeatable” is that a simulation that was run once is

recorded and can be identically replayed again and again. In this context “repeatable” is

hereby applied to the characteristic that a simulation can be repeated identically and

testably for as many times as desired.

b. Simulation Seed Consistency

The second meaning of “repeatable” is the repetition of the simulation itself using

a starting seed for pseudo-random number generators (e.g., for a given seed, the fight

between two entities always ends the same way), although probabilities and random

numbers are used. Varying the seed allows diverse scenario validations to be repeated with

varying results. Keeping the random-number-generator (RNG) seed construct provides

identical inputs for identical output results.

c. Simulation Seed Variability

The third definition of “repeatable” is the run of a simulation with different seeds

to get stochastically consistent outcomes. New entities are injected into the simulation

using another simulation, so the entities show up at the same place and time in every

simulation run. The outcome for each simulation run differs because the random number

generators are started with different seeds. In this example “repeatable” applies to the

repeated injection of entities for every simulation run. Such controlled variation is valuable

not only for analytic assessment but also machine-learning training and software/system/

personnel evaluation.

5

2. “Compression”

For this thesis, “compression” describes the fact that a certain amount of data that

is recorded, stored or transmitted, is modified or distilled to reduce the amount of data that

has to be handled, stored or transmitted. Such compressions can be lossy but are preferably

lossless for best repeatability and interoperability. Compaction of data can also lead to

reduced computation loads and improved communications throughput.

E. MOTIVATING USE CASES

PDU streams that are captured in the MOVES LVC Lab can be replayed to the

original application that sent them out or in any other application that can communicate via

DIS. There is one major issue with playing it back verbatim to an application. The older

the PDU stream gets, the trickier it becomes to handle the difference in time. A PDU packet

must have a valid timestamp to be accepted by the DIS application. Another issue is the

life cycle of DIS applications. After storing a DIS stream for some years the application

may be discontinued. An additional issue is evolution of the standard. A DIS stream valid

under a certain version of the standard may not be understandable on a system running a

different version of the standard—new versions are not guaranteed to be backward-

compatible.

1. Software Assessment

One use case for this thesis is to make the DIS stream playable using open-source

standards and software. X3D, for example, can move 3D models in an arbitrarily complex

3D world and deliver it in a Web browser. The journey from recording a DIS stream,

compressing it and turning it into a PositionInterpolator/OrientationInterpolator pair with

TimeSensor clock is one part of this thesis. A block diagram of this journey is sketched out

in Figure 50.

2. Software Testing

On the way from a DIS stream to the aforementioned X3D code, many lines of code

were produced. When integrating code into an existing software distribution it is important

to maintain the core functionality of the existing code, such as OpenDIS7 Code Base or

6

X3D Examples Archive. Therefore, it is essential to repeatedly test functionality.

Repeatedly testing blocks of code (known as “unit testing”) is achieved by having code

that can be run automatically during a build process that typically stops the process

immediately once a test fails. Unit testing is the only way to ensure that new code does not

damage old code. For DIS, unit testing is described in detail in this thesis.

3. Simulation Analysis

Another use case is the analysis of a recorded stream to test it for a specific

constellation of entities. E.g., a pilot flying in a simulator that is connected to a LVC

network utilizing PDUs to send out the position of the aircraft of choice, can be evaluated

in an AAR by a simple analysis of the stream. The stream contains all information about

the flight, target, enemies killed, and attempts of enemies to attack the pilot. No COTS

software is needed to evaluate the pilot’s performance. This use case supports training

reinforcement, qualification testing, after-action analysis, and synthetic exercise

experimentation.

F. BIG DATA

While the outcome of a simulation run is important, the storage needed is relatively

small. But when it comes to recording simulation streams, the amount of data being stored

is increasing.

An example illustrates this situation. Within a run of a simulation many PDUs are

sent over the network. An entity that follows a straight track simulated in VR Forces

produces about 174 Entity State PDUs (ESPDUs) per minute (Figure 1), whereas an entity

following a circle-shaped route produces 290 ESPDUs per minute (Figure 2).

7

Figure 1. Entity in VR Forces application following a straight track

Figure 2. Entity in VR Forces application following a many-sided polygon

Simulations with only one entity are relatively rare. A normal simulation can have

up to 1000 entities that generate PDUs. Not all entities move all the time. Therefore,

approximately 100 PDUs per entity per minute is a reasonable estimate. A thousand entities

times 100 PDUs per minute averages 6,000,000 PDUs per hour, or over 1500 PDUs per

second.

8

These numbers are assumptions. A live run of the default HawaiiGround scenario

in VR Forces simulation 52 with entities led to 4000 PDUs per minute which equals about

76.9 PDUs per minute per entity. Therefore, 100 PDUs per entity per minute is a good

number to estimate the PDU load that must be handled reliably by network and storage.

Big Data characteristics are volume, variety, veracity, and velocity. These are

known as the four V’s of Big Data that create value that can be explored. Creating recorded

LVC behavior streams together with searchable comprehensive metadata makes this entire

field suitable for data science.

G. ORGANIZATION OF THIS THESIS

This thesis starts with background information on Web standards that are used in

this research. We review the kind of products currently available on the market and the

functionalities they lack. A short introduction to networking and distributed virtual

environments (VE) is followed by information about PDU encodings.

Chapter III provides insights on shared behavior in 3D worlds focusing on the

basics of DIS with its different types of PDUs and a short note on SPIDERS3D Virtual

Environment.

Chapter IV describes the implementation of capturing, recording, and storing DIS

packets with its different encodings. A demonstration is provided on how a PDU stream

from an arbitrary simulation is converted into autogenerated code that is playable by every

open-source software that can play X3D animations.

Chapter V provides insights into procedures for troubleshooting the process of

developing new code and implementing it into a simulation. Verification, validation and

accreditation (VV&A) is also addressed, because the worst error that can occur is the one

that goes unnoticed.

Chapter VI summarizes the main points of this thesis and recommends future work.

9

II. RELATED WORK

A. WEB STANDARDS

To get a reliable solution that lasts multiple decades, it is fundamentally important

to use open-source standards that are well-known and broadly distributed over the internet

and the community of interest the solution is intended for. From a long-term perspective,

such strategies enable all manner of repeatability.

X3D is a royalty-free open standard defined in XML to represent 3D objects

arranged in scenes (Web3D, n.d.-a). XML has the big advantage in that it can be tested

against a schema and multiple quality assurance (QA) tools (Web3D, n.d.-c). XML is the

internet standard for writing well-defined documents. It can be used for cross-platform,

inter-application data transfer.

Hyper Text Markup Language (HTML) is the primary publishing language of the

World Wide Web (WWW or Web). The current stable version of the standard, HTML5.2,

can transport all varieties of content, including videos, to the user. According to

www.w3.org (W3, n.d.-a)

HTML is the World Wide Web’s core markup language. Originally, HTML
was primarily designed as a language for semantically describing scientific
documents. Its general design, however, has enabled it to be adapted, over
the subsequent years, to describe a number of other types of documents and
even applications. (W3, n.d.-b)

To give the user an easy way to display X3D models, X3D source or links can be

embedded in HTML. Currently there are two players available to embed X3D directly

within HTML: X3DOM (X3dom, n.d.) and X_ITE (Create3000, n.d.-a). Formalization of

multiple techniques to integrate X3D with HTML files is in progress as part of the Web3D

Consortium X3D version 4 standardization efforts (Web3D, n.d.-e, p. 3).

B. 3D MODELING

Three-dimensional modeling for distributed simulation can be accomplished using

X3D. X3D is an open-source, royalty-free, international standard for 3D graphics used on

http://www.w3.org/

10

the Web. X3D is designed to be interoperable with most 3D modeling tools by offering a

compatible path to web publication. X3D also provides import and export publishing

compatibility for many formats (Brutzman & Daly, 2007). X3D is scalable from simple

3D models up to large-scale multi-model environments (Brutzman & Daly, 2007).

1. Software for X3D

Four types of software are used for X3D: authoring tools, players, converters, and

libraries.

a. X3D Authoring Tools

To create X3D models and scenes, authoring tools must be used. Tools can either

come as a rich client like X3D-Edit (NPS Savage Research Group, n.d.-d), Blender

(Blender Foundation, n.d.), Titania X3D Editor (Create3000, n.d.-b), Meshlab (Cignoni et

al., 2008), or can be installed as a plugin in NetBeans, for example (Web3D, n.d.-f). Native

XML authoring tools can also be used, such of XMLSpy by Altova (Altova, n.d.).

The simplest authoring tool is a text editor. It has no amenities, but can produce a

valid X3D file, if the author is confident in their coding skills.

b. X3D Players

Since the X3D standard is an open-source standard, it can be found in numerous

different players. The following widely-used players can be downloaded and used to

display X3D models:

• FreeWRL is an Open Source, cross platform VRML2 and X3D compliant

browser (SourceForge, n.d.-a).

• H3DViewer is a standalone X3D browser for Windows (GitHub, n.d.-b).

• Instant Reality is a framework that provides a comprehensive set of

features to support Virtual Reality (VR) and Augmented Reality (AR).

The framework is designed to support various industry standards, like

VRML and X3D (Instant Reality, n.d.).

11

• Octaga Player is a X3D player by Octaga Visual Solution AS which is free

for non-commercial use (Visco, n.d.).

• Castle Game Engine View3DScene is a viewer for many 3D model

formats like X3D, VRML, gITF, Collada, 3DS and many more

(Kamburelis, n.d.).

• Xj3D is a Java project of the Web3D Consortium focused on creating a

toolkit for VRML97 and X3D content (SourceForge, n.d.-b).

• X3DOM is an open-source framework and runtime to publish 3D graphics

on the Web (X3dom, n.d.).

• X_ITE is a 3D JavaScript library that uses WebGL for 3D rendering

(Getting Started » X_ITE X3D Browser » CREATE3000, n.d.).

Each player can display X3D models, but the number of functions implemented

differs.

c. X3D Converters

The following X3D converters simplify conversions between different data

formats.

• VRMLout for AutoCad and VRML Translator for Inventor (CadStudio,

n.d.).

• X3D In/Out Toolkit(Sons, 2013/2019).

d. X3D Libraries

The following X3D Libraries can be used as a basement upon which to build other

X3D software.

• X3D Java Scene Access Interface Library (X3DJSAIL) (Web3D, n.d.-g).

12

• X3D Python Scene Access Interface Library (X3DPSAIL)

(Carlsonsolutiondesign, 2019/2019).

• X3DOntology for Semantic Web (Web3D, n.d.-b).

• X3DJSONLD is a local node.js webserver for serving files from localhost

(Carlson, 2015/2020).

2. Comparison of X3D Players

To compare the different standards, displayed outputs in three different models with

varying difficulty were used: Hello Germany, Olympic Rings, and Lighthouse. Another

important point is to test for international text with special characters as X3D fully supports

Unicode.

For each of the three scenes, six screenshots and a table are provided. Swirl did not

display one scene properly, so it was removed from the comparison in order to not distract

the reader with all black screenshots. Xj3D Plugin and Xj3D Player both use the same

source code, so Xj3D Plugin is used for screenshots.

a. Hello Germany Scene

The first scene set up for testing the players incorporates three blocks with three

different colors and two different text shapes. The intent of one of the text shapes is to test

the player’s ability to support localization (l10n) and internationalization (i18n) (W3, n.d.-

c).

To see the scene displayed by X_ITE, scan the QR code in Figure 3 or visit

http://x3dgraphics.com/examples/X3dForAdvancedModeling/HelloWorldScenes/

HelloGermanyX_ITE.html.

http://x3dgraphics.com/examples/X3dForAdvancedModeling/HelloWorldScenes/HelloGermanyX_ITE.html
http://x3dgraphics.com/examples/X3dForAdvancedModeling/HelloWorldScenes/HelloGermanyX_ITE.html

13

Figure 3. QR code for Hello Germany Model displayed by X_ITE

(1) FreeWRL

FreeWRL displays the scene with special characters but the flag is too close to the

upper text field. The text is too large (Figure 4).

Figure 4. FreeWRL default view of Hello Germany scene

(2) H3DViewer

H3DViewer correctly displays the scene with special characters. The flag is

positioned correctly (Figure 5).

14

Figure 5. H3DViewer default view of Hello Germany scene

(3) Instant Reality

Instant Reality correctly displays the scene with special characters. The flag is

positioned correctly (Figure 6).

Figure 6. Instant Reality default view of Hello Germany scene

(4) Octaga Player

Octaga Player correctly displays the scene with special characters. The flag is

positioned correctly (Figure 7).

15

Figure 7. Octaga Player default view of Hello Germany scene

(5) Castle Game Engine View3DScene

View3DScene correctly displays the scene without special characters (the issue was

reported and will be fixed in a later version). The flag is too close to the upper text shape

(Figure 8). Note: The default bounding box was disabled.

Figure 8. View3DScene default view of Hello Germany scene

(6) Xj3D

Xj3D displays the scene with special characters correctly. The flag overlaps the top

text shape (Figure 9).

16

Figure 9. Xj3D default view of Hello Germany scene

Table 1. Comparison of player performance for Hello Germany

Name of Player Vertical Alignment Special characters Resolution and size
of text

FreeWRL Incorrect Yes Too large text, but
resolution is high.

H3DViewer Correct Yes Correctly sized text
and high resolution.

Instant Reality Correct Yes Correctly sized text
and high resolution.

Octaga Player Correct Yes Correctly sized text
and high resolution.

View3DScene Correct No Too large text and
low resolution.

Xj3D Correct Yes Too small text but
high resolution.

(7) Summary Assessment

For the first scene with three blocks and two text shapes, five out of seven players

provide perfect spacing. One player lacks special characters. Details are listed in Table 1.

The simple presentation of interoperable geometry, text display and internationalization

(I18n) of characters in a 3D virtual environment is a widespread capability available for

further use.

17

b. Olympic Rings X3D Model

The second X3D model set up for testing players is made of extrusion nodes. DEF

and USE are used for defining one ring and reusing it with different colors. The rings are

slightly rotated by a few degrees in the x-y-plane to make the intersections more effectively

visible.

The extrusion is set up as a ring that is elevated on the x-axis by a spine of 1 meter

(Figure 10).

Note connecting segment for this closed strip on right-hand side.

Figure 10. Plane crossection view of the X3D model of a ring extrusion

The first iteration of the model had an issue with intersecting inner and outer circles.

The computed circle points were created using an Excel spreadsheet. The problem with the

original computations was that the spreadsheet calculated the points counterclockwise

separately for both rings, leading to self-intersecting geometry. This error leads to the

tessellation issue shown in Figure 12: The last point of the inner ring connects to the first

point of the outer ring.

18

Although this is not a valid X3D model because it has a self-intersecting extrusion,

interestingly Octaga Player and Instant Reality handled it.

After opening an issue on the Github page for View3DScene (GitHub, n.d.-a),

Michalis Kamburelis pointed out the issue with the model (Web3D Consortium, 2020b).

After fixing the model (Figure 13) four of the six tested players displayed the model

perfectly. Visual debugging techniques by Dr. Kamburelis (Figure 11) were instrumental

in diagnosing this obscure error. Figure 11 shows the erroneous geometry characteristics,

excerpted using the Castle Game Engine View3DScene diagnostic testing.

Figure 11. View3DScene Diagnostic Testing for Extrusions

Figure 12. Intersecting inner and outer ring of the model leads to incorrectly

formed geometry and erreneous results

19

Figure 13. Fixed model with open ring as a single convex strip rotated around

a circle

To see the scene displayed by X_ITE scan the QR code in Figure 14 or visit

http://x3dgraphics.com/examples/X3dForAdvancedModeling/GeometricShapes/

OlympicRingsX_ITE.html.

Figure 14. QR code for Olympic Rings URL displayed by X_ITE

(1) FreeWRL

FreeWRL displays the scene with the rings in a perfect shape. The intersections are

handled perfectly. The lighting of the scene is correct (Figure 15).

http://x3dgraphics.com/examples/X3dForAdvancedModeling/GeometricShapes/OlympicRingsX_ITE.html
http://x3dgraphics.com/examples/X3dForAdvancedModeling/GeometricShapes/OlympicRingsX_ITE.html

20

Figure 15. FreeWRL default view of the Olympic Rings scene is correct

(2) H3DViewer

H3DViewer has difficulties viewing convex extrusions. The intersections are

noticeable. The lighting of the scene is correct (Figure 16).

Figure 16. H3D default view of the Olympic Rings scene is erroneous

(3) Instant Reality

Instant Reality handles extrusions correctly. Intersections and light are correct

(Figure 17).

21

Figure 17. Instant Reality default view of the Olympic Rings scene is correct

(4) Octaga Player

Octaga Player handles extrusions, intersections, and light correctly (Figure 18).

Figure 18. Octagon Player default view of the Olympic Rings scene is correct

(5) View3DScene

View3DScene handles extrusions, intersections, and light correctly (Figure 19).

22

Figure 19. View3DScene default view of the Olympic Rings scene is correct

(6) Xj3D

Xj3D 2.2 handles extrusions, intersections, and light correctly (Figure 20). This

open-source codebase is actively maintained and improved by NPS for Web 3D (NPS

Savage Research Group, n.d.-b).

Figure 20. Xj3D default view of the Olympic Rings scene

23

Table 2. Comparison of player performance for Olympic Rings

Name of Player Extrusion Intersections Light

FreeWRL Excellent Excellent Excellent

H3DViewer Incorrect Incorrect Excellent

Instant Reality Excellent Excellent Excellent

Octaga Player Excellent Excellent Excellent

View3Dscene Excellent Excellent Excellent

Xj3D Plugin Excellent Excellent Excellent

(7) Summary Assessment

For the second scene with extrusions, DEF, USE and intersecting objects, Octaga

Player, Instant Reality, View3Dscene and Xj3D Plugin perform best. Thus, more complex

X3D geometry computed at real time is an available capability for shared Web-compatible

virtual environments.

c. Lighthouse Scene

The third X3D scene for testing players is a complicated setup with routes between

TimeSensors, OrientationInterpolators and TouchSensors nodes. A beam cone is loaded

from the Savage X3D Example Archive as prototype and imported into the scene. The

beam cone is geometry, semitransparent with lines and a PointLight node. The lighting of

the scene is separate. Detailed descriptions and specification links for these critical

animation nodes are available in the X3D Tooltips (Web3D, n.d.-d).

(1) FreeWRL

FreeWRL displays the scene with the imported prototype. Animation and lighting

with action buttons work (Figure 21).

24

Figure 21. FreeWRL default view of the Lighthouse scene is correct

(2) H3DViewer

H3DViewer displays the scene without the imported prototype (Figure 22).

Animation and lighting with action buttons do not work despite model testing using X3D

validator (NPS Savage Research Group, n.d.-c).

Figure 22. H3D default view of the Lighthouse scene without beam cone

(3) Instant Reality

Instant Reality displays the scene without the imported prototype. Animation and

lighting with action buttons work (Figure 23).

25

Figure 23. Instant Reality default view of the Lighthouse scene without beam

cone

(4) Octaga Player

Octaga Player displays the scene with the imported prototype. Animation and

lighting with action buttons work (Figure 24).

Figure 24. Octaga Player default view of the Lighthouse scene is correct

(5) View3DScene

View3DScene displays the scene without the imported prototype. A message on

the console states that imports are not support as of the time of the test. Animation and

lighting with action buttons work (Figure 25).

26

Figure 25. View3DScene default view of the Lighthouse scene without beam

cone

(6) Xj3D

The Xj3D displays the scene with the imported prototype. Rotation does not work,

but lighting with action buttons works (Figure 26).

Figure 26. Xj3D default view of the Lighthouse scene

27

Table 3. Comparison of player performance for Lighthouse with beam cone

Name of
Player

Import Prototype Rotation, Light Notes

freeWRL Correct Yes, Yes
H3DViewer Incorrect No, No Light is displayed

within the Lighthouse.
Instant Reality Incorrect Yes, Yes Rotation is working

without cone being
displayed.

Octaga Player Correct Yes, Yes
View3DScene Incorrect Yes, Yes Rotation is working

without cone being
displayed. Light is
displayed within the
Lighthouse.

Xj3D Plugin Correct No, Yes Light is displayed
within the Lighthouse.

(7) Summary Assessment

For the lighthouse scene with rotation, touch sensors and an imported prototype

freeWRL and Octaga Player perform best. Once again, these tests provide high confidence

that frequently used animation and interaction techniques can be widely available to

support Web-standard compatible VEs. Animation chains using X3D TimeSensor,

PositionInterpolator, and OrientationInterpolator nodes are vitally important for DIS

behavior stream visualization.

3. X3D TimeSensor Node

A X3D TimeSensor node is used as a simulation clock to provide an animation time

that can be used as an input to interpolators. The flag Loop = “true” starts the

TimeSensor with the scene and keeps it running repeatedly after it reaches the end. The

TimeSensor must have a name defined with a DEF tag to make it addressable to the

ROUTE connection to corresponding interpolator nodes. A cycle interval of 1 means that

one complete cycle lasts 1 second (Figure 27).

28

Figure 27. Code excerpt for a X3D TimeSensor shows XML encoding of
keyfields in this node

4. X3D PositionInterpolator Node

A PositionInterpolator node provides interpolated values between two coordinates

to smooth animations. X3D uses the two fixed coordinates to approximate the position

between those two points over time of an entity animated by the PositionInterpolator.

For every value in “key” there must be a tuple of floats in “keyValue” representing

the x, y, and z coordinates. A code sample for a PositionInterpolator can be found in Figure

28.

Figure 28. Code excerpt for a X3D PositionInterpolator shows XML
encoding of keyfields in this node

5. X3D OrientationInterpolator Node

An OrientationInterpolator node provides interpolated values between two fixed

points to make animations smoother. A rotation around the y-axis has a start rotation value

of 0 and an end rotation value of 6.283185 (2 Pi). The OrientationInterpolator provides

values between both values stretched over the cycle interval of the TimeSensor (Figure

27). Intermediate values are included to avoid direction ambiguity. Therefore, one

complete rotation around the y-axis takes 1 second. A code sample for an

OrientationInterpolator can be found in Figure 29.

<PositionInterpolator DEF=’Entity’ key=’0.0 0.25 0.5 0.75
1.0’ keyValue=’0 0 0 0 1 0 0 2 0 0 1 0 0 0 0/>

<TimeSensor DEF = “BoxTimeInterval’ cycleInterval=’1’
loop=’true”/>

29

Figure 29. Code excerpt for a X3D OrientationInterpolator shows XML
encoding of keyfields in this node

C. NETWORKING AND DISTRIBUTED VIRTUAL ENVIRONMENTS

The introduction of this thesis describes how different MOTS simulations work

together using a network within a lab. In the MOVES LVC lab, for example, the Marine

Air-Ground Task Force (MAGTF) Tactical Warfare Simulation (MTWS) and MAK Inc.’s

VR Forces can be set up to use a network to share ESPDUs. Every simulation runs its own

entities populating their state to the network so that all other simulation applications

connected to the network can populate them within their simulation space. Every entity has

one simulation that oversees its state. It must maintain the location, current heading, current

speed, and dead reckoning parameters. With an ESPDU being sent out over the network,

one simulation informs all other participating simulations about location, current heading,

current speed, and dead reckoning parameters, so that they can use them in their own

simulation space and display them to the user.

For military applications, live, virtual, and constructive (LVC) entities are used that

can share one simulation space. For example, live tanks with soldiers drive around the Ft.

Irwin National Training Center, supported by virtual CAS aircrafts controlled by an aircraft

simulator at any base in the U.S., being threatened by constructive hostile artillery operated

by civilian contractors sitting at computers in a control room at the simulation center. To

get an even bigger picture in this simulation, constructive entities are added to the

simulation space to reach a higher level of real-world fidelity.

To connect LVC applications bridges and gateways are used. Bridges and

Gateways are critical to most distributed Live, Virtual, and Constructive (LVC) simulation

environments. The role of bridges and gateways is often misunderstood by distributed

simulation planners. A good source to read more on gateways and bridges is the tutorial

<OrientationInterpolator DEF=’SpinEntity’ key=’0.0 0.25 0.5
0.75 1.0’ keyValue=’0 1 0 0 0 1 0 1.57 0 1 0 3.14 0 1 0 4.71
0 1 0 6.28/>

30

“Gateways in Distributed Simulation” given at Simulation Innovation Workshop in

February 2020. Inquiries can be made at the SISO university webpage (SISO, n.d.-b).

D. COMMAND AND CONTROL SYSTEM TO SIMULATION SYSTEM
INTEROPERATION (C2SIM)

C2SIM is an international standard published by the Simulation Interoperability

Standards Organization (SISO) for information interchange across C2 systems, simulation

systems, and robotic and autonomous systems (RAS). These interconnections are required

to support live/virtual/constructive training. Additional related requirements are exercise

replay, mission planning, mission rehearsal, and mission re-creation (Dr. J. M. Pullen et

al., 2019). The Military Scenario Definition Language (MSDL) and the Coalition Battle

Management Language (C-BML) are prior standards being replaced by C2SIM.

The NATO Modelling and Simulation Group (MSG) 145 is working on

“Operationalization Of Standardized C2-Simulation Interoperability” (NATO S&T

Organization, 2018). To get a good understanding of C2SIM it is useful to read the C2SIM

vision by NATO SMG 145:

We are working toward a day when the members of a coalition interconnect
their networks, command, and control (C2) systems, and simulations simply
by turning them on and authenticating, in a standards-based environment.
A C2SIM Coalition is a system of systems (M. Pullen et al., 2018).

There are strong interrelationships between NATO and SISO. On the one hand the

NATO MSG 145 depends on SISO for open industry-based standards, but on the other

hand, SISO depends on NATO technical activities to field and validate C2SIM technology.

This balance of imperatives produces excellent results.

C2SIM was designed for complex environments. According to (Brook, 2015, p. 1),

a complex environment includes:

• more than one nation participating

• single or multiple domains

• multiple service branches

31

• multiple systems and networks

• distributed environments (multi-site operation) (Brook, 2015).

C2SIM does not specify a transport mechanism. Rather, it is intended for use in any

distributed framework, such as that provided by HLA, DIS, or TENA for interconnecting

simulation systems.

E. PDU ENCODINGS

The current DIS 7 version supports recorded DIS streams stored with BASE64

encoding (Josefsson, 2006, p. 64). For future versions of DIS, some more file formats are

useful. When conducting on this research, one plain text file format with comma separated

values (CSV) was used (see Chapter IV.C.2). Other file formats can be added to DIS7 by

adapting the existing source code.

Possible future file formats include:

• Plain Text: PDU Type, Values (both CSV and TSV with comments

appended),

• Binary Stream (matching the stream on the wire),

• JSON, minified JSON, EXI4JSON (numeric arrays and objects),

• XML fully documented PDU, with and without default values (using

schema validation),

• EXI (Debich, 2015; Hill, 2015; Snyder, 2010; Williams, 2009)

• MAK Data Logger format,

• MAK Data Logger text format (pretty print), and

• Compressed DIS (C-DIS) (draft format for limited bandwidth situations)

(SISO, n.d.-a)

32

Each type of encoding has its own advantages and disadvantages. A file that is

compressed to save storage is often not human-readable. A file encoded with the MAK

Data Logger Text Format (Figure 33) is relatively user friendly, but consumes large

amounts of storage space. This encoding does have another disadvantage: it is not parsable.

Therefore, once stored there is no way to read it back in to send to another simulation. For

all other encodings, a matching player to parse files to send them back to a network is

achievable.

F. PROPRIETARY ENCODINGS AND STANDARDIZATION
CONSIDERATIONS

Of note, several commercially available tools (MAK data logger, Red Sims DIS

PDU Recorder, Pitch, etc.) provide logging capabilities but record them using proprietary

formats. This situation indicates that common shared logging capabilities can be achieved

easily, and that converters are possible. Since logging formats are themselves archival for

the session, lack of interoperability holds little value from a data-science or simulation

perspective.

Since IEEE DIS specification defines bit formats explicitly, such logs can be

considered authoritative. Since the existence of XML, EXI and JSON schemas can strictly

define alternative encodings with exact syntactic equivalences, it follows that XML, EXI

and JSON logs can be considered functionally equivalent to IEEE-compliant DIS binary

and plain-text CSV/TSV stream recordings.

33

III. SHARED BEHAVIORS IN 3D VIRTUAL ENVIRONMENT
(VE) SIMULATIONS

A. INTRODUCTION

Chapter III covers what is important to know when it comes to simulating using

DIS. First, a small history on DIS is given. Second, recording of DIS streams is explained

and software applications for that purpose are reviewed. Some main components of DIS

are highlighted, then a list of all functional DIS areas and all types of PDUs is provided.

An overview is also provided SPIDERS3D Virtual Environment.

B. DISTRIBUTED INTERACTIVE SIMULATION (DIS)

To achieve interoperability for the scenario described, DIS is one of the standards

that can be used. DIS is a standard for running real-time simulations across multiple

networks and computers hosting simulations. The first standard for DIS was defined in

IEEE 1278–1993–Standard for Distributed Interactive Simulation–Application Protocols

[1]. DIS is defined in IEEE Standard 1278.

The “SISO Reference for Guide: DIS Plain and Simple” (still in draft) (SISO, 2007)

contains a good chapter covering the history of DIS:

The standard was developed over a series of “DIS Workshops” at the
Interactive Networked Simulation for Training symposium, held by the
University of Central Florida’s Institute for Simulation and Training (IST).
The standard itself is very closely patterned after the original SIMNET
distributed interactive simulation protocol, developed by Bolt Beranek and
Newman for Defense Advanced Research Project Agency in the early
through late 1980s. BBN introduced the critical concept of dead reckoning
to efficiently transmit the state of battle field entities, as well implementing
DARPA‘s vision of simulations involving inexpensive general purpose
computers (vs. 6DOF motion platforms and/or supercomputers), hundreds
of online players (not just the ‘onesies and twosies’ which had been done
before), wherein the realism and training value came not from high-fidelity
simulation of vehicle dynamics but by the real time play with lots of
intelligent allies and lots of intelligent opponents.

In the early 1990s, IST was contracted by the United States Defense
Advanced Research Project Agency to undertake research in support of the
U.S. Army Simulator Network (SimNet) program. Funding and research

34

interest for DIS standards development decreased following the proposal
and promulgation of its successor, the High Level Architecture (HLA,
initially entitled DIS++), in 1996. HLA was produced by the merger of the
DIS protocol with the Aggregate Level Simulation Protocol (ALSP)
designed by Mitre (SISO, 2007).

DIS usage is widely spread across Department of Defense, NATO, and allied

nations. It is used for real-time simulation and occasionally for connecting virtual worlds

to C2 systems. For DIS there are many distributions available for use. The one used for

this thesis is Open-DIS Version 7 mainly developed by the MOVES Institute at the Naval

Postgraduate School (NPS). OpenDIS is royalty-free and available to the public under

https://github.com/open-dis.

The new OpenDIS7 is currently under development. It provides full coverage of

the IEEE DIS version 7 specification. Support for full capabilities using Java is expected

to be announced this year. Similar to the prior version 4 release of the OpenDIS library,

auto generation of code pattern, from Java to other programming languages (Python, C#,

XML, JSON, etc.) is expected.

C. AVAILABLE SOFTWARE

Because all entity states are sent to the network the simulations are connected to, it

is obvious that it must be possible to record and play them back. For this thesis, a study of

related work was conducted to find software that can record and playback PDUs. One open-

source framework and two available COTS software products were found that can achieve

the goal of recording and playback DIS streams.

1. OpenDIS7

The cheapest way, financially, to record and playback DIS streams is to utilize some

classes of the OpenDIS7 distribution. OpenDIS7 provides many classes including

examples that can be used to record and play back DIS streams including every available

PDU type defined in the DIS standard (72 total). This approach is used and explained

throughout this thesis and therefore not explained in detail at this point.

https://github.com/open-dis

35

The older OpenDIS4 version provides classes that can also record DIS streams,

although more programming work is necessary to achieve all the same capabilities as in

OpenDIS7. Work on these projects is steadily progressing.

2. Redsim DIS PDU Recorder

Redsim’s DIS PDU Recorder can record and playback and comes with a dual LAN

option. It supports DIS streams sent via multicast and broadcast. The software can filter,

capture or playback for certain family-related PDUs (RedSim, n.d.).

Redsim’s DIS PDU Recorder lacks the capability to compress DIS streams or

convert them into another format. Figure 30 shows a screenshot with some options.

Figure 30. Option panel of Redsim’s DIS PDU Recorder

More information on Redsim’s DIS PDU Recorder can be found at
http://www.redsim.com/products/dis-pdu-recorder.html.

http://www.redsim.com/products/dis-pdu-recorder.html

36

3. MAK Data Logger

MAK Data Logger was available for review in an already installed version on a

computer in the MOVES LVC lab. MAK Data Logger can record and playback DIS PDUs.

Playback is available in slow motion and fast forward. The main window of the MAK Data

Logger displays bars correlating to the number of PDUs received per time unit (Figure 31).

Similar to video streams, during recording and playback, annotations can be added to mark

certain points on the timeline. Two type of annotation are available: time points and time

frames. Annotions are important metadata that can help navigate within a stream of many

PDUs. These can also be used to step through the important points of interest while giving

an after-action briefing.

Figure 31. MAK Data Logger main window displaying bars and annotations

Another feature is the ability to filter for certain PDUs. This can be done with an

extra dialog wherein PDU families can be checked or unchecked (Figure 32).

37

Figure 32. PDU Kind filter selection window in MAK Data Logger

The recordings can be saved to make a proprietary *.lgr format or exported to a

human readable plain-text file (Figure 33).

38

Figure 33. Plain Text output of a DIS PDU recorded by MAK Data Logger

*
**** Packet #6 Size=864 time=0:00:01.3619, 20:57:36.1909 Mon Apr 13, 2020
WARNING: size mismatch: packet(864), DIS header(144) ####
******** Type=PDU #4 ***
PduKind: EntityStatePduKind (1)
Version: 7
Exercise: 1
ProtocolFamily: FamilyEntityInteraction (1)
TimeStamp: 3456.19
TimeStampType: Relative
receivedTime: 0
Size: 144
PDU Status (bits) : 00001000
 Transferred Entity Indicator : PduStatusTransferredEntityIndicatorNoDifference
(0)
 LVC Indicator : PduStatusLVCIndicatorNoStatement (0)
 Coupled Extension Indicator : PduStatusCoupledExtensionIndicatorCoupled (1)

EntityId: 1:3001:12
EntityType: 1:1:222:6:1:0:0
ForceID: ForceFriendly (1)
Location: [x= -5.50673e+06 y= -2.24105e+06 z= 2.30185e+06]
Velocity: [x= -1.55846 y= 8.67897 z= 4.68981]
Acceleration: [x= -0.265273 y= 1.47729 z= 0.798275]
Orientation: [Psi= 1.74847 Theta= -0.488808 Phi= 1.99472]
AngularVel: [x= 0 y= 0 z= 0]
DrAlgorithm: DrDrmRvw (4)
NumArtParams: 0
NumAttachedParts: 0
Guise: 1:1:222:6:1:0:0
Appearance: 4194304
PaintScheme: 0
Immobilized: FALSE
FirePowerKill: FALSE
DamageState: DamageNone (0)
EngineSmoke: FALSE
SmokePlume: FALSE
TrailState: TrailingEffectsNone (0)
HatchState: HatchNA (0)
LightState: LightsNone (0)
Flames: FALSE
Frozen: FALSE
PowerPlant: TRUE
FinalPdu: FALSE
LauncherRaised: FALSE
CamouflageType: DesertCamouflage (0)
Concealed: FALSE
Tent: FALSE
Ramp: FALSE
Marking: UtilVeh 1
CharSet: 1
Capabilities: 0

39

The MAK Data Logger stores PDUs into an internal database keeping track of the

order they arrived by using the PDU timestamp. They can be saved in a proprietary format.

To replay a stream, the PDUs are pulled from the database and resent over the network as

PDUs. Slow motion and fast forward are available. The amount of traffic on the network

for every replay is the same as in the original simulation run. No conversion to X3D

interpolators or compression to reduce the file size is available. Since no text-based

structured encoding (such as CSV or TSV) is provided, further conversion is not currently

practical.

More information on the MAK Data Logger can be found under

https://www.mak.com/products/link/mak-data-logger.

4. Pitch Cross Domain Security (CDS) Gateway

Pitch Cross Domain Security (CDS) Gateway is a proxy application that can be

used together with different security devices to match requirements and policies. It also

includes tools to monitor and log data (Pitch Technologies, n.d.). The product description

page and directed inqueries did not reveal whether all of the DIS-based data in the Real-

time Platform Reference (RPR) FOM (SISO, 2015) log could be bridged to DIS or not.

D. BASIC ARCHITECTURAL COMPONENTS OF DIS

Each entity is run by a simulation application. One simulation application can run

several entities. The simulation application is responsible for translating user interactions

into messages sent to other simulation applications.

The messages sent over the network by a simulation application are ground truth

for the entities controlled by the simulation application that sent the message. Receiving

simulation applications are responsible for deciding whether a reported entity is visible by

their own controlled entities or not.

The main components of the Entity State PDU used in this research are the

timestamp and the location arguments. A PDU contains many more arguments used to

display entities with high fidelity. A list of all information contained in an Entity State PDU

can be found in (IEEE, 2012).

https://www.mak.com/products/link/mak-data-logger

40

1. Entity State PDU (ESPDU) Timestamp Considerations

It is important to verify the correct format of an ESPDU. There is one definition in

(IEEE, 2012, p. 323).

The definition in (IEEE, 2012, p. 323): “The scale of the time value contained in

the most significant 31 bits of the timestamp shall be determined by letting zero represent

the start of the hour and letting 231–1 represent one time unit before the start of the next

hour. The next hour then starts back at zero. This results in each time unit representing

exactly 3600/ (231) s (approximately 1.67638063 μs).”

Given that the time is reset to zero after one hour, every simulation on the network

must be aware of this to interpret PDUs in the correct order.

Another definition for a time scale for ESPDUs sometimes used for simulations

with a lower resolution is the Unix time system. It uses a signed 32-bit integer to give the

number of seconds that have elapsed since 1 January 1970.

Using a timestamp scale, other than the one described first, causes chaos in an

environment that has more than two simulations communicating.

2. ESPDU Location

ESPDUs contain four different kinds of information describing the location of an

entity with respect to the world, velocity, orientation, and dead reckoning parameters.

3. Location with Respect to the World

The location with respect to the world is always specified as the origin of the entity

coordinate system. Each entity is displayed as a 3D model. The origin of the 3D model

matches the location of the entity with respect to the world coordinate system.

4. Velocity

Linear and angular velocity of an entity is important when it is in motion through

three dimensions. In addition to velocity, acceleration can be helpful for dead reckoning.

The velocity is always given with respect to the world coordinate system. Relative effects

like wind do not apply and are added later.

41

5. Orientation

The orientation of an entity is described by three Euler angles. The three angles are

used to transform from the world coordinate system into the entity’s local coordinate

system. The order of rotation about coordinate axes is z, y, x.

6. Dead Reckoning (DR)

Within the DIS specification a process called dead reckoning is described in detail

to show how velocity and acceleration values are used to project existing position and

orientation progress prior to the next ESPDU arriving. The process is designed to reduce

the amount of PDUs sent over the network.

Normally a simulation keeps track of an entity with its model designed for that

specific entity. In addition, the simulation uses a dead reckoning algorithm to estimate the

entity’s position, since the last update was received. If the difference between the actual

position of the entity and the estimate using the dead reckoning process reaches a certain

threshold an update PDU is sent (IEEE, 2012, p. 70). If there is no difference between the

actual and the estimated position, then a PDU must be sent at least every 5 seconds (the

“keep alive” interval), to prevent the entity from being inactive. All available dead

reckoning algorithms are displayed in Table 4.

42

Table 4. Dead Reckoning formulas. Source: (IEEE, 2012)

7. World Coordinate System

Locations in a simulation are expressed by a right-handed, geocentric system. It is

called the world coordinate system. The origin of the world coordinate system shown in

Figure 34 is located at the center of the sphere. The axes of the world coordinate system

are labeled X, Y, and Z. One length unit in the simulated world corresponds to one meter

in the real world.

43

Figure 34. The “world coordinate system” shows how a geocentric

coordinate system is arranged. Source: IEEE (2012).

8. Entity Coordinate System

Every entity in a simulation has an entity coordinate system. It is also a right-handed

system. The center of the entities bounding volume shown in Figure 35 is the origin of the

entity’s coordinate system. The origin of the entity coordinate system represents the

entity’s location within the world coordinate system (IEEE, 2012).

In comparison with the world coordinate system, an entity’s coordinate system is

relative to the given rigid body and axes are labeled with the lower case letters x, y, and z.

44

Figure 35. Entity coordinate system. Source: IEEE (2012).

E. TYPES OF PDUS

There are 72 types of PDUs in 13 functional areas. The 13 functional areas are (IEEE,

2012):

• Entity Information/Interaction

All PDUs that provide basic entity and entity collision information are listed

under the functional area of Entity Information/Interaction.

• Warfare

All PDUs that provide basic warfare information (e.g., firing or launch of

weapons, detonation of ammunition) are contained in the functional area of

Warfare.

• Logistics

PDUs that model means of logistics like repair and resupply logistics are

modelled within the functional area of Logistics.

• Radio Communications

45

All PDUs modeling transmitting or receiving interactions between entities

are modelled within the functional area of Radio Communications.

• Simulation Management

PDUs in the functional area of Simulation Management are used to manage

an exercise and facilitate the operation of the network the exercise is

running on.

• Distributed Emission Regeneration

All PDUs emitting waves or beams (e.g., radar, laser, sonar) are

summarized under the functional area of Distributed Emission

Regeneration.

• Entity Management

The functional area of Entity Management provides tools to support larger

DIS exercises where it is helpful to aggregate or group entities and keep

track of their aggregation or grouping status. Additionally, protocols for

transferring the ownership of an entity between two simulations are

included.

• Minefield

The simulation of minefields and single mines is contained within the

functional area of Minefields.

• Synthetic Environment

All nonentities like weather, diurnal effects, and natural and human-made

disturbances are handled within the functional area of Synthetic

Environment.

• Simulation Management with Reliability

46

Same functional area as Simulation Management but with built-in reliability

so critical management tasks are completed even if individual PDUs are

dropped.

• Information Operations

All operations that interrupt the enemy’s decision-making process are

handled within the functional area of Information Operation (e.g., electronic

warfare, computer network operations).

• Live Entity (LE)

Live entities that are reporting their position or heading via DIS uses the

functional area of Live Entity Information/Interaction to account for limited

bandwidth by using smaller footprints.

• Non-Real-Time Protocol

The functional area of Non-Real-Time Protocol is used to run an exercise

slower or faster than real-time.

A list with all 72 different PDUs can be found in Appendix A.

F. SPIDERS3D VIRTUAL ENVIRONMENT (VE)

SPIDERS3D Virtual Environment is an online collaboration platform using

geographical data enriched by X3D models that are driven by DIS streams. SPIDERS3D

Virtual Environment can interface with a Web browser accessing a designated SPIDERS3D

Virtual Environment server. The official page for SPIDERS3D Virtual Environment

contains a useful summary:

SPIDERS3D is a N4 facilities logistics platform that delivers interactive,
geospatially accurate, real-world 3D Virtual Environments to improve
systems engineering and advance planning communications to identify risks
for introducing new weapon platforms into the shore environment.

Naval Enterprise engineers and planners use the SPIDERS3D tool to support
major defense acquisition programs by visualizing platform-to-shore

https://www.navfac.navy.mil/products_and_services/am/products_and_services/Integrated_Product_Support/spiders_3d.html

47

interface design concepts and by identifying potential incompatibilities and
risks early in the design process. Consequently, this enables earlier
consideration of program alternatives for installations worldwide.

One critical aspect of SPIDERS3D is that it allows multiple users across the
DOD enterprise to conduct real-time 3D collaboration over the Web on their
desktop. The platform currently contains more than 100 virtual real-world
installations and bases and locations, and over 300 different 3D models of
weapon platforms, shore support equipment, shore infrastructure and
facilities.

The Web-based Extensible 3D (X3D) technology implemented in
SPIDERS3D provides a framework to increase 3D data interoperability.
Extensible 3D is a royalty-free, open-standard file format and run-time
architecture to represent and communicate 3D scenes and objects using
extensible markup language. This International Standard (IS) also enables
repurposing of other 3D data, and is complementary with emerging digital
thread technologies, such as 3D scanning and 3D printing.

The strategic need for increased agility and creativity in our technical
coordination activities has never been more important in this time of COVID-
19 forced isolation. SPIDERS3D provides a ready and scalable capability to
sustain remote connectedness, and accelerate technical collaboration across
DOD, Allies and partner nations via the Web (Brutzman, n.d.).

Future work by NPS has been proposed, to continue porting OpenDIS7 library

capabilities to JavaScript and JSON so that direct DIS streams connected from a gateway

bridge emitting DIS streams originating from heterogenous LVC behavior sources. The age

of open data standards (such as DIS) and open-source code makes such an activity

fundamentally valuable with long-term stability and repeatability expected as a logical

outcome of these reliable design principles.

G. SUMMARY

Chapter III focused on what is important to know when it comes to DIS simulation.

After a short overview of DIS history, the chapter covered recording of DIS-streams and

COTS products available on the market. Some main components of DIS were highlighted to

get the user comfortable with the topic of DIS. A list of all 13 functional areas with its 72

PDUs was provided although the next chapters mainly focus on ESPDUs (PDU Type 1), as

well as SPIDERS3D, its use of X3D, and its planned connections to DIS.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

IV. IMPLEMENTATION AND DEMONSTRATION

A. INTRODUCTION

Chapter IV describes all the tools needed to make a DIS stream driving a X3D

model. This is needed to promote DIS behavior streams as first-class media types in the

future. We start with capturing DIS packets using Wireshark to show how to make

simulation data visible. Recording and playing DIS streams to and from files in different

formats is described to offer a manual to follow when this area of knowledge is new to the

reader.

Transforming a PDU stream into autogenerated code that can be used to drive a

X3D model, the key part of this thesis, is described in IV.G and IV.H.

B. CAPTURING DIS PACKETS

For analysis it is often useful to capture DIS packets as they are sent over ethernet.

This can be achieved using software that captures all network traffic on a specific network

device. Useful software for this purpose is Wireshark (WireShark, n.d.).

One possible use case for capturing DIS packets might be the following: DIS

packets are broadcast from a local machine running a Coalition Battle Management

Language (CBML) application (IP: 192.168.188.87) to the broadcast address of the local

network (IP: 192.168.188.255).

After installing Wireshark to a machine on the local network, Wireshark must be

started. The startup screen of Wireshark shows a selection dialog (Figure 36) for the target

network interface to capture packets from. For most of our LVC environments it is the

ethernet interface.

50

Figure 36. Dialog to select network interface

To begin Wireshark in capture mode, a user double-clicks on one of the displayed

network interfaces (Figure 37).

51

Figure 37. View of Wireshark in capturing mode

Often large amounts of network traffic are present. To focus on a specific address

or packet type it is useful to apply a filter by selecting the text field (highlighted in Figure

38).

Figure 38. View of text field for filter expression

The syntax to apply a filter for a specific network address is ip.addr == <IP

addr>. For this example, ip.addr == 192.168.188.255 is entered, which is the

multicast address being used for the DIS simulation in progress. After applying the filter

52

by pressing {Enter}, Wireshark displays all packets with 192.168.188.255 either as source

or destination address (Figure 39).

Figure 39. View of an applied filter for a single IP address

To apply an additional filter for a specific protocol, the name of the protocol must

be typed in the text field shown in Figure 38. To filter DIS packets, it is enough to type in

“dis” and {Enter}. All protocols must be typed in lower case. Thus the example combined

filter is ip.addr == 192.168.188.255 && dis.

Since Wireshark parses all DIS PDUs, information within a DIS packet gets

displayed in a human-readable form. To analyze a single packet’s information, it must be

selected to show the details view. When all nodes are expanded, packet information is

displayed as shown in Figure 40.

53

Figure 40. Details of a single DIS PDU packet parsed by Wireshark

54

Using AllPduSender.java to send all 72 DIS PDUs to multicast address 239.1.2.3

leads to a capture of all 72 PDUs in Wireshark (Figure 41). Screen capture information can

also be copied and saved as a plain-text data file for further processing and analysis.

Figure 41. All 72 IEEE DIS PDU types captured with Wireshark

55

C. RECORDING DIS PACKETS

DIS Packets can be recorded and saved with different encodings without loss of

relevant information. The intended use of the files (replay convenience, analytic tool, file

sharing, network bandwidth, etc.) drives the decision on which encoding is to be used.

Figure 42 illustrates the process from a PDU stream being recorded, saved to a file, read

from a file, populated to PDUs, and sent out, utilizing any kind of network to finally

become a PDU stream again. The architecture of this approach is modular, so many new

encodings can be added just by adding a Recorder/Player software pair of classes that

handle the specific encoding.

Figure 42. Recording and play back of PDU streams can occur using

different encodings. Future encoding pairs are straightforward and
testable.

56

1. Saving Recorded PDUs to Base64 Encoding

The DIS 7 distribution contains classes for recording and playback of DIS packets.

They are named Recorder.java and Player.java. Base64 is the name for a common text-

based encoding that uses 64 distinct alphanumerical characters as a means of representing

6 bits of information (26 = 64) in an 7- or 8-bit ASCII character (Josefsson, 2006). This

technique is commonly used for binary attachments in text-based email messages by the

Multipurpose Internet Mail Extensions (MIME) Standard (Borenstein & Freed, n.d.). In

the DIS 7 distribution, two examples are provided showing how to record and save DIS

packets into a file. PduListenerSaver.java inherits from instantiates a recorder from

Recorder.java and saves all PDUs being received into a file encoded with BASE64 (Figure

43).

Figure 43. PDU types 5 – 12 from AllPduSender.java in BASE64 encoding

text characters offering some compression but not plain-text
readability

2. Saving Recorded PDUs to a Parsable Plain-Text File

For debugging purposes, the BASE64 format is not ideal since it is compressed and

not human readable. For the intent of this thesis, it is important that a user be able to inspect

recorded files by hand and search for content. Therefore, modified Player.java and

Recorder.java classes were developed for “plaintext” readable usage (such as Big Data

analysis). The original Base64 programs written by Mike Bailey have been renamed to

RecorderBase64.java and PlayerBase64.java. The newly developed human readable plain-

text classes are named RecorderPlainText.java and PlayerPlainText.java. The file

57

PduListenerSaver.java was also modified to either let the programmer choose the

RecorderBase64.java or RecorderPlainText.java class as designed for processing a given

PDU log file.

As displayed in Figure 44, it is now possible to inspect PDU packets when they are

recorded in plain text. PDU Header and PDU Content are clearly separated from each other:

[PDU Header], [PDU Content]. Interestingly an existing Java class was utilized to

accomplish this input/output format:

Figure 44. PDU types 5 – 12 from AllPduSender.java in plain text makes the

values of each received PDU human readable

D. PLAYING BACK DIS PACKETS

PduReaderPlayer.java instantiates a player from player.java opens a file containing

a PDU stream, and then sends all packets back to a specific broadcast address. Like

PduListenerSaver.java, the PduReaderPlayer.java class was modified to instantiate either

the PlayerBase64.java file encoding by Mike Bailey or the PlayerPlainText.java file

encoding written for this thesis.

In order to independently test recorded files, Wireshark again proves useful.

Wireshark can decode received PDUs and make them easy to compare by displaying them

in a table. In Figure 45 Wireshark is used to record the playback of the PDUs from Figure

43 and Figure 44. It is obvious that the first eight lines are identical to the last eight lines.

A comparison by hand would have taken much longer (if not forever) and is not practical.

58

Figure 45. Wireshark snapshot of PDU types 5 – 12 from Base64 encoded

and unencoded log file

E. RECORDING DATA FROM SIMULATIONS

Recording and playing back synthetically created PDUs is good for testing purposes

but not useful when it comes to working with simulations, which may generate immense

numbers of packets.

DIS simulation data used for this thesis was generated using MAK VR Forces.

Therefore, it is important to know how to record data from simulations. When VR Forces

starts, a screen for the configuration of the simulation connection is displayed. In this

screen the DIS version, the port and the multicast address can be entered to ensure

connectivity to corresponding Recorder.java (Figure 46).

Before recording PDUs it is important to check lines 21 and 22 in the corresponding

Recorder.java:

21 private final static String MCAST_ADDR = “239.1.2.3”;

59

22 private final static int DIS_PORT = 3000;

The multicast address and port number from Figure 46 goes to the appropriate

constants. Improved handling of these parameters is expected as part of upcoming

OpenDIS7 library improvements.

Figure 46. VR Forces Application Simulation Connection Configuration

60

Once the simulation is running and a scenario ready to start the main class

PduListenerSaver.java can be started. When the PduListenerSaver.java is ready to record,

the command console looks like Figure 47.

Figure 47. PduListenerSaver.java is ready to record PDUs

VR Forces has a corresponding background window called vrfSimDIS.exe (Figure

48) which displays DIS activity. PDUs are decoded and displayed in a way that is easy to

understand and helpful when it comes to playing back recorded streams to VR Forces.

Figure 48. VR Forces window with status of DIS entities

61

In Figure 49 a basic scenario with one hostile entity and one track setup in VR

Forces is displayed. After starting the scenario, the entity follows the track and stop at the

end of the track.

Recording the PDUs sent over the network leads to a Pdusave.dislog file stored in

the pdulog subfolder of the currently used Recorder.java. To see whether DIS files are

travelling over a specific network and reaching the computer with the recorder running,

Wireshark with a properly set DIS filter is useful but not necessary.

In the current implementation it is important to stop the Recorder.java by pressing

{q} on the keyboard. If the recoding process is not shut down properly, the Pdusave.dislog

is not closed and therefore, there is no end comment marker written to it. Without an end

comment marker the file is not playable by the Player.java. If this happens an end comment

marker can be copied from another saved logfile and appended to the file that was not

closed properly.

62

Figure 49. VR Forces screen with one track and one hostile entity

F. PLAYING BACK RECORDED DIS DATA TO SIMULATIONS

Data recorded in the previous steps can be played back to a simulation using

PduReaderPlayer.java. The easiest setup to test this is to playback the entities to the

simulation they came from. Therefore, the scenario on VR Forces must be cleaned from

entities and tracks. Before starting the playback, it is important to set VR Forces into run

mode by pressing the Play button. Once the simulation is in run mode it is moving its entities

63

and listening for DIS packets. As there are no entities there is nothing to move until the

playback is started.

To start the playback run PduReaderPlayer.java. It playbacks all *.dislog files in the

pdulog subfolder. If only one file shall be played back it is important to move all other files

to another folder or delete them.

The PDUs being played back over the ethernet shall lead to some output in the DIS

window of VR Forces and populate our entity we set up in our example scenario moving the

track we created.

If PDUs are being sent the entity is moving according to the location and heading

sent in the PDUs. For testing purposes and to see the dead reckoning at work, the network

cable can be disconnected at any time. The entity continues moving with latest speed and

heading send by an PDU. If no update is sent for more than five seconds (the specified “keep

alive” period), the entity disappears from the map.

If the network cable is disconnected right before a turn, the entity keeps moving

straight for a maximum of 5 seconds, missing the turn. A PDU is unable to transmit future

data, for example a left turn in 3 seconds. Therefore, the entity continues moving until either

an update is received, or the entity disappears from the map. If the cable is plugged back in

and the network connection is restored before the 5 seconds time frame ends, the entity is

merged back to the heading and speed send by the latest PDU. According to default dead

reckoning parameters it is not doing a magic move to the new position.

G. TRANSFORM A PDU STREAM INTO X3D POSITIONINTERPOLATOR

In the MOVES LVC lab there are many simulations sending PDUs to inform other

simulations about the status of entities. One of the simulations is VR Forces. VR Forces is

used for many tests because it is easy to have an entity set up, moving a defined and

repeatable route of travel. PDUs can be recorded and saved to a file. Another use of a

recorded stream is to extract entities and convert them into X3D entities. X3D entities have

a higher fidelity to the real world when they move within the scene driven by a

PositionInterpolator accompanied by a matching OrientationInterpolator, driven together by

64

a shared TimeSensor node. The algorithm for the conversion from the stream of a DIS

application into an animated X3D entity driven by autogenerated code is shown in Figure

50.

Figure 50. Algorithm for creating X3D tracks through PDU filtering

65

A recorded DIS stream can be used to drive a TimeSensor (Figure 51) and a

PositionInterpolator (Figure 52) in X3D.

Figure 51. Code excerpt for a X3D TimeSensor shows XML encoding of
keyfields in this node

Figure 52. Code excerpt for a X3D PositionInterpolator shows XML
encoding of keyfields in this node

To achieve this a DIS stream can be recorded using the class PduListenerSaver.java

from OpenDis7Examples. This class saves a file with the extension *.dislog. The logfile

must be read by the PduReaderPlayer.java originally written by Mike Bailey and modified

for this thesis. The class PduReaderPlayer.java reads in the logfile, create ESPDUs and

unmarshalls the byte stream from the file to populate the created ESPUs. The timestamp

and location from each ESPDU are read and stored into a hash map. A hash map is chosen

because it uses the same connection between a key and a key value like the

PositionInterpolator in X3D uses (Figure 52).

The values from the ESPDUs can be obtained with getTimeStamp() and

getEntityLocation(). By adding, for example, getX() to getEntityLocation a single variable

can be accessed. To start populating the hash map the timestamp of the first ESPDU must

be stored to get relative times between ESPDUs. There is no use for absolute simulation

times for playbacks. The value of the first timestamp is subtracted from the first and all

subsequent ESPDUs. Therefore, the first value is 0 and all other keys have ascending

values greater than 0. Timestamps are stored as keys. Locations are stored as belonging

keyValues.

<TimeSensor DEF = “BoxTimeInterval’ cycleInterval=’1’
loop=’true”/>

<PositionInterpolator DEF=’Entity’ key=’0.0 0.25 0.5 0.75
1.0’ keyValue=’0 0 0 0 1 0 0 2 0 0 1 0 0 0 0/>

66

Once all values are stored in a hash map, the duration of the entire DIS stream must

be derived and put into the TimeSensor attribute cycle Interval. To be in line with the

standard for X3D PositionInterpolators, times in the key attribute field must be between

zero and one. To normalize times in the hash map all values of the hash map must be

divided by value of the latest timestamp. After doing this calculation the first timestamp in

the hash map shall still be zero but the last timestamp shall be one.

Keys and keyValues in the hash map are now set up to be written into a TimeSensor

and a PositionInterpolator.

TimeSensor and PositionInterpolator are both put together in the same manner.

Both have an opening XML tag, one or more attributes, and values for the attributes. XML

tags and attributes are hard-coded strings. Values for the attributes are pulled from a hash

map, converted from double to strings with three digits, and appended to strings for either

the TimeSensor or PositionInterpolator.

After all values are stored in two strings, the XML closing tag is added to both to

make them valid XML expressions. They are printed to the console to make them available

to be copied into a X3D file.

a. Storing PDUs

Once configured, VR Forces send updates using the IP addresses provided. The

PDUListenerSaver.java class from the DIS7 examples records the DIS stream to a plain-

text file on another computer. PduListenerSaver.java originally uses the Saver.java by

Mike Bailey to store the stream in a BASE64 encoded file. For the purpose of this thesis,

the Recorder.java file was modified to get an unencoded, more human-readable file. The

source code for the RecorderPlainText Java program can be found in Appendix C.

b. Processing Stored PDUs

With the PDU stream in a text file the processing of the file is straightforward. The

file is read in by a Java class called PduReaderPlayer.java originally written by Mike Bailey

and modified for this thesis.

67

The class reads the file line-by-line as strings and populates the strings to PDUs.

Once a PDU is populated to an ESPDU using the espdu.unmarshal method, timestamp,

coordinates and orientation are accessible the following commands:

• Espdu.getTimestamp() provides a float representing the ticks in time

elapsed since the top of the current hour,

• Espdu.getEntityLocation().getX() provides a float representing the entities

X coordinate within the world coordinate system,

• Espdu.getEntityLocation().getY() provides a float representing the entities

Y coordinate within the world coordinate system,

• Espdu.getEntityLocation().getZ() provides a float representing the entities

Z coordinate within the world coordinate system,

• Espdu.getEntityOrientation().getPhi() provides a float representing the

entities Phi angle within the world coordinate system,

• Espdu.getEntityOrientation().getPsi() provides a float representing the

entities Psi angle within the world coordinate system, and

• Espdu.getEntityOrientation().getTheta() provides a float representing the

entities Theta angle within the world coordinate system.

There is more information available in the Javadoc for extracting information from

PDUs that can be used in future work.

All timestamps, coordinates and angles are stored into a Java LinkedHashMap with

a double integer as key and a class “Coordinates” as keyValue. The class “Coordinates”

(Figure 53) was written for this thesis and maps x, y, z, phi, psi, and theta into one class,

so that it can be handled by the LinkedHashMap.

68

Figure 53. UML-diagram for Coordinates.java

In a simulation an entity moves towards a goal in a generally straight direction.

Although heading and speed does not change, the simulation sends out updates as PDUs.

For replay purposes, the updates have to conform to the DIS standard of transmitting an

update at least every 5 seconds (the “keep alive” or “heartbeat” interval).

To avoid an entity from moving in a jerky manner, it is important to send out

updates, once the heading of the entity changes. To achieve this a stream of PDUs must be

postprocessed.

c. Physics-based filtering and compression

If we assume that an entity is unable to change direction and speed arbitrarily, we

can use a first-order approximation between two waypoints. If a sequence of waypoints

describe a straight line, only the first and the last points are needed. Filtering and deleting

collinear points between two waypoints compresses the size of the stream.

69

There is no need to test for certain packets that describe a state of the entity after

something important happened in the simulation. E.g., if there is a large explosion that

affects many entities, the stream contains ground truth whether the entity is affected or not.

A compression of a stream in the sense described in this thesis is always retrospective. If

the entity changes heading and speed because of an explosion, the simulation sends out

ESPDUs so that the algorithm applied can filter them in the way described before.

d. Distill concise first-order linear interpolators from streams

For postprocessing a sliding window mentioned in (Arasu & Manku, 2004) and

shown as a flowchart in Figure 54 is used. Points from the stream are added to a sliding

window. Once three points are within the sliding window they can be checked for

collinearity. When they are collinear the first and the last points are needed to get a high-

fidelity playback. In addition to that the size of the sliding window is tracked, as shown in

Figure 54. Once the difference between the first and the last packets in the sliding window

exceeds 4 seconds, the first and the last points are added to the track to comply with the

DIS “heartbeat” requirement. The process described can be used for creating X3D

PositionInterpolators and compressing DIS streams directly. An example of an

autogenerated PositionInterpolator can be found in the Appendix C.

Stream Add points to sliding window

Add points in sliding window to
track

A < T

t < 4 sec

Figure 54. Flowchart of sliding window algorithm to compute area A

70

Testing for collinearity is performed with Heron’s Formula (Figure 55) (Kendig,

2000). A triangle with the area A is constructed between the first two and the last points

within the sliding window. Variables a, b, and c for Heron’s Formula can be calculated by

subtracting the coordinates of two of the three points mentioned before.

Given three points, P1(x1, y1, z1), P2(x2, y2, z2) and P3(x3, y3, z3), the variables a,

b, and c can be calculated by the following calculations (AmBrSoft, 2014):

𝑎𝑎 = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 + (𝑧𝑧2 − 𝑧𝑧1)2

𝑏𝑏 = �(𝑥𝑥3 − 𝑥𝑥1)2 + (𝑦𝑦3 − 𝑦𝑦1)2 + (𝑧𝑧3 − 𝑧𝑧1)2

𝑐𝑐 = �(𝑥𝑥3 − 𝑥𝑥2)2 + (𝑦𝑦3 − 𝑦𝑦2)2 + (𝑧𝑧3 − 𝑧𝑧2)2

When the area A of the triangle is zero, the three points can be considered as

collinear.

𝐴𝐴 = �𝑠𝑠(𝑠𝑠 − 𝑎𝑎) ⋅ (𝑠𝑠 − 𝑏𝑏) ⋅ (𝑠𝑠 − 𝑐𝑐)

𝑠𝑠 =
(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)

2

Figure 55. Heron’s Formula for measuring collinearities. Adapted from
AmBrSoft (2014).

To account for outliers a threshold is used. Once the threshold is met, the first and

the last points are stored to a new map containing all points necessary to achieve a high-

fidelity playback of the original recorded track. The threshold can be adjusted for a

smoother playback.

An example of a model animation driven by a PDU stream is provided in Figure 56

and Figure 57. The first figure provides a track of an aircraft flying from one point to

another with a slight change of track in the middle of the flight. Twelve PDUs with position

and heading updates are sent to inform other simulations about the actual position and

heading of the aircraft.

71

Figure 56. DIS track of an aircraft with 12 PDUs

After applying the sliding window algorithm, four PDUs are left that are needed to

represent the track. Between the updates the simulated aircraft keeps flying with speed and

orientation of the last provided update or in the case of X3D an approximated direct route

between two known positions.

Figure 57. Compressed DIS track of the aircraft from with 4 PDUs

H. CREATE A MATCHING ORIENTATIONINTERPOLATOR

In X3D, entity states can be modified using PositionInterpolator and

OrientationInterpolator pairs. The PositionInterpolator alters the entity position. To picture

a model of an aircraft without an OrientationInterpolator, imagine a circling aircraft (Figure

58). The aircraft’s state is determined by a simulation which transmits PDUs. The remote

simulation creates ESPDUs to publish the heading and speed of the aircraft. The

interpolators effectively create a distilled “recording” of the entity track that is easily saved

within an X3D model, no longer requiring network connectivity or DIS protocol parsing

capabilities.

72

Figure 58. A aircraft flying a circle

Recording ESPDUs to drive the movement of the aircraft in Figure 56 using a

PositionInterpolator would result in the replay displayed in Figure 59.

Figure 59. Replay of an aircraft using a solitary PositionInterpolator

The PositionInterpolator alters the position of the entity representing the aircraft

but not the heading. A movement like this (aircraft flying backwards) is of course incorrect

and also distracting for the user.

73

Changing the heading of the aircraft results in a rotation of the aircraft. To achieve

the rotation in X3D an OrientationInterpolator must be utilized. Using a

PositionInterpolator together with an OrientationInterpolator results in replay that is closer

to reality and better accepted by the viewer (Figure 60).

Figure 60. Replay of an aircraft using a PositionInterpolator and

OrientationInterpolator

An example of an autogenerated OrientationInterpolator can be found in Appendix

C.

I. X3D IMPLEMENTATIONS OF PDUS

All PDUs transmitted by a simulation represent defined entities. For ESPDUs those

can be trucks, tanks, cars, bicycles, aircrafts, helicopters, ships, and many more.

Simulations like VR Forces provide a 3D model database for drawing the entity at its

position in the world coordinate system. Having many different models provides a more

diversified picture than having a generic model represent all land-based entities.

When it comes to converting PDU streams to X3D position and

OrientationInterpolators, it is also important to represent the entity in X3D in a way that is

acceptable to the user. For this thesis, a red rectangular block was initially used to show

74

changes of speed, orientation, and position. A future topic could be the automation to

extract the type of vehicle from an ESPDU, match it with a model from the X3D model

exchange, generate code to apply the X3D prototype to the scene, and wiring it up with

ROUTE commands using autogenerated code like the code that is used to generate position

and orientation interpolators.

Other PDUs like fire or explosions can be handled in a similar way. The X3D

Distributed Interactive Simulation Architecture Component defines native mappings for

ESPDU, Fire, Detonation, Collision, Radio, Signal and Transmitter PDUs. The addition of

comment PDUs is suggested next. For confirming players, X3D can replay recorded DIS

streams in a 3D world that is freely explorable by a viewer using arbitrary viewpoints.

J. AUTOMATED ANALYSIS OF PDU STREAMS FOR AFTER-ACTION
REVIEW (AAR)

After-action review (AAR) is a common briefing activity for analysts and military

applications. To perform after-action analysis of PDU streams, Java-based code can be

used to measure anything one can imagine when it comes to LVC. Regularizing DIS to

align with best practices for Big Data has great potential value.

For example, the DIS stream of a trainer is recorded during a participant training

mission having the goal to reach a certain target, destroy the object, and return to base. The

entire mission is recorded as a PDU stream. From that recorded stream, many questions

can be answered just by comparing PDUs:

• Was the target reached (distance to target)?

• Was the participant hit by another entity (query of collisions, fires,

explosions)?

• Did the participant fire on the target?

• Did the participant hit the target?

• Did the participant return to base without getting destroyed?

75

• What were corresponding metrics for other participants?

• What was the probability distribution function for other entities?

• How do metric results and distributions compare to other recorded

exercises and incidents?

All those questions need nothing more than a query of the PDU stream. It can all

be reduced to checking the minimum distance of entities or checking for a collision of an

entity with any type of ammunition. AAR analysis code for achieving this can be used (and

reused) universally so the current problem with custom written analysis for custom

simulations would be overcome. This is an important area for continued development.

K. SUMMARY

This chapter provides an introduction on all tools needed to get a DIS stream

driving a X3D model. DIS packets were displayed using Wireshark to make the data that

is vital to distributed simulations visible. Recording and playing DIS streams to and from

files in different formats was described to get everything set up that is needed to transform

a PDU stream into autogenerated Position and OrientationInterpolator. All techniques

described in this chapter are key to have DIS runs repeatably available on servers accessible

via Web browsers. Representations of PDUs in X3D and automated analysis of PDU

streams were introduced to the reader to suggest important areas for future work.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

V. TESTING AND TROUBLESHOOTING

A. INTRODUCTION

This chapter focuses on testing and evaluating connections, PDU streams and

entities. It continues to introduce the reader to troubleshooting techniques including the use

of Wireshark, OpenDIS7 examples, and some other Java classes to explore the “art of the

possible” and path forward for continued progress.

B. CONNECTING TO DIFFERENT TYPES OF NETWORKS

Real-world simulations connect over multiple types of networks and interfaces. To

connect for example a live unit at the National Training Center with the LVC lab at NPS

several LANs, VLANs, WANs and VPNs must be utilized. All kinds of networks must be

configured to send UDP packets when broadcast and multicast are used. In the case of

utilizing unicast for distribution, sending and receiving must be configured.

Multicast and broadcast are used when it is important to send PDUs to multiple

receivers simultaneously, where senders, receivers and simulations are directly connected

to one or more networks. A PDU bridge can connect these networks so that they appear

like a single network environment for participants. When sending PDUs across multiple

networks where no simulation is running, it is important to use a VPN for classified or

private direct unicast connection for unclassified data.

C. TEST AND EVALUATION OF CONNECTIONS

Network connections are the key asset when it comes to distributed interactive

simulations. Without network connections simulations cannot interconnect. More

important than the presence of a connection is its quality. For most DIS applications

bandwidth is no longer an issue because almost all network connections today provide at

least 10 Mbit/s. The main issue for DIS is the delay of packets caused by a network. In this

context, the network includes all cables, active, and passive components. When LAN

connections are used a latency up to 5 ms is normal. For WAN connections between

different bases 10–100 ms are acceptable. If VPN and satellite connections are included

78

latency times can go up to 1000 ms. A latency time of 1000 ms leads to a difference in

timestamps of one second between two simulations. For a simulation, on the aggregate

level, this is not an issue. For a simulation on the entity level, when two virtual entities

(operated by a human) fight each other, 1000 ms in latency time can cause an unsatisfactory

user experience.

For this thesis, multiple different network connections were tested:

• Same network connected via LAN (Ethernet),

• Same network connected via WiFi,

• Domestic connection using VPN over WiFi,

• Transatlantic connection using VPN over LAN (Ethernet),

• Transatlantic connection using VPN over WiFi.

All connections were tested using a ThinkPad T470 with Intel Core i7 and 32 GB

RAM. For the WiFi tests the network cable was disconnected. For the LAN tests the WiFi

was turned off. VPN connections were established using Shrewsoft VPNClient [16] and

terminated on a AVM FritzBox 7490 (AVM International, n.d.).

To obtain test statistics, the Windows command prompt together with the freely

available standardized network tool ping.exe was used. Ping can send a defined number of

packets keeping track of the time for one roundtrip. An alternative tool for multiple

operating systems is netcat.

The complete command used for this test can be found in Figure 61.

Figure 61. Windows Command Prompt command for collecting test statistics

The IP address belongs to a VR Forces workstation connected via ethernet to a

gigabit switch. The option indicated by “-n” is the switch for setting the number of packets

being sent followed by the number. The double right arrow “>>“ redirects output from the

ping 192.168.188.36 -n 100 >>C:\log.txt

79

output window into the named text file. The execution of this command takes about 100

seconds because one packet is sent per second. An example output for a test with 10 packets

can be seen in Figure 62. After receiving 10 packets, statistics on the quality of the network

connection are provided.

Figure 62. Sample log file for 10 packets over local WiFi

The connection in Figure 62 is a WiFi connection on the local network resulting in an
average of 15 ms and 0% loss (which is excellent and expected for an uncontested home
network). See Table 5 for all tested connections.

80

Table 5. Average roundtrip times for tested network connections

Connection Average round trip time (latency)

Same network via LAN 0 ms

Same network via WiFi 15 ms

Domestic WAN using VPN over WIFI 27 ms

Transatlantic WAN using VPN over
LAN

173 ms

Transatlantic WAN using VPN over
WiFi

251 ms

Sometimes network connections are not consistently reliable but when they are

tested with the described procedure, they appear reliable. To test a network connection over

a longer period, ping can operate in an infinite mode. With the help of the following

procedure it is possible to distinguish between a broken network connection and a server

that is sometimes not responding. From the simulations point of view, both scenarios look

identical.

To set this test up the command in Figure 63 can be used. It sends packets until

{Ctrl}-C is pressed. Then it writes the summary statistics and closes the file.

Figure 63. Windows Command Prompt for infinite packet sending

For demonstration purposes, the log file in Figure 64 was created by disconnecting

the network cable for about a second. This resulted in one request time-out and a packet

loss of about 6%. When this test runs for a longer time with more than 100,000 packets one

lost packet is not an issue. This log file is best analyzed by considering the average

roundtrip time and packet loss. If there are no lost packets, then the possibility exists that

there is a server issue, perhaps resulting from low server performance due to high CPU

usage.

ping 192.168.188.36 -t >>C:\log.txt

81

Figure 64. Sample log file for an infinite connection test

D. UNIT TESTING PRINCIPLES AND BEST PRACTICES

There are two different approaches for testing the integrity of a recording tool. The

first is described in Figure 65. A stream of defined DIS PDUs is sent to a DIS logger to get

the first fingerprint of the stream. A perfect approach for sending out all 72 PDUs in a

repeatable way is the Java class AllPduSender.java from the DIS 7 examples. From the

logger the stream is resent and recorded with the preferred DIS recording tool. That tool

saves the stream in whatever format is chosen. The tool should now replay the stream. The

stream is sent to the DIS logger used for the first reference copy.

82

Figure 65. MAK Logger Unit Test Steps: Capture stream, play, store, replay,

then perform difference (diff) comparison

After the second reference copy is taken, the two reference copies can be compared.

If there is no difference in the fingerprints, the tested DIS recording tool is validated in

accordance with IEEE Std 1278.2–2015 (IEEE, 2012).

E. QUALITY ASSURANCE (QA) OF PLAYED BACK STREAMS

To test the integrity of DIS streams being recorded and played back it is important

that the packets being recorded match the packets being played back. A first step to test for

this is to record all 72 PDUs sent by AllPduSender.java, record them with Wireshark, play

them back, and record the packets again. A difference between the Wireshark output files

would indicate an error in the recorder.java or player.java.

It is important to not just encode and decode the streams and play them back. If

there are just strings copied around there is no way to get a handle to the coordinates.

Therefore, the player must decode the stream and parse the strings into an integer array so

that coordinates can be extracted.

MAK Logger

Internal
Object

Datastore

2. play

3. replay

1. stream
DIS

PDUs

4. diff

83

F. UNIT TESTING OF SOFTWARE PACKAGE INTEGRITY

One objective of unit testing is to isolate a section of code, run it repeatedly, and

verify its correctness every time it runs. The code isolation is usually performed by the

developer during the development process because the code is best known by its author.

Working on a software packet that is in use in all kinds of civilian and military

simulations is dangerous. If something breaks, the software users face errors not knowing

where they originate. One important way to prevent this is to implement unit testing. Unit

testing is the use of code snippets to test the integrity of code before and after changing it.

Unit testing for sending and receiving PDUs, for example, is realized by sending

all different 72 PDUs over the network and to a hash map. The transmitted PDUs are

captured by a receiver and put into another hash map. In a first step, the two hash maps are

tested for same size of key set. If this holds true, both keysets are used to compare the key

value of each in key in both sets. If this holds true, the assumption is made that sent and

received PDUs are the same. For the DIS distribution the described behavior is

implemented in edu.nps.moves.dis7.AllPduRoundTripTest.java (Figure 66). If

AllPduRoundTripTest.java is run, it shows a message with the number of packets sent and

received. If the number of received packets equals the number of sent packets,

AllPduRoundTripTest.java displays the test result “true” (Figure 67).

84

Figure 66. UML Diagram for AllPduRoundTripTest.java Comparison.

Source: Schutt (2019).

If the number of received packets does not equal the number of sent packets, the

result is “false” (Figure 68).

Figure 67. Status message after a successful run of

AllPduRoundTripTest.java

Figure 68. Status message after an unsuccessful run of

AllPduRoundTripTest.java

Hints for finding errors when running AllPduRoundTripTest.java can be found in Chapter
V.

85

To automate this test, AllPduRoundTripTest.java can be run automatically as part

of every software build that is run. Failing AllPduRoundTripTest.java fails the build,

signaling that something is broken within the package.

The described procedure is not a bulletproof way of testing the integrity of PDUs,

but it flags a large class of unacceptable errors that otherwise make it to the end-user

distribution without any failure notification.

G. TEST FOR NUMBERS OF PACKETS RECEIVED

A simple test for the fidelity of a receiver/recorder is to count the number of valid

PDUs received within a given time window. For this test we need a simulation and two

receivers on one network.

The two recorders are set to listening mode before the simulation is started. In this

case, started means that the simulation software is not running. This can be verified by

checking the packet counters in the two simulations. This is important because VR Forces

(for example) regularly sends out DIS packets to test the network. Starting the recorders

after the simulation can lead to a difference in counted packets.

Both recorders capture PDU packets from a small scenario. The recorders are not

stopped before the simulation software is properly shut down to ensure that all packets are

captured. After the simulation is stopped, the two recorders are also shut down. If both

recorders come from the same software distribution/developer, the output files can be

compared directly by finding the difference in the files. If not, an inspection or count by

hand has to be done to see how many packets were received (Figure 69).

86

Figure 69. Two recorders connected to one simulation to check for

differences in the recorder output

H. COMPARATOR FOR DIS STREAMS

The sketch for a new Java class called DisStreamComparator.java is described in this

paragraph and a flow chart is provided in Figure 70. The idea is to use a separate Java class

to read in two different streams. The streams do not require the same format or encoding.

The class compares both inputs and reports some statistics and values that provide evidence

on whether the inputs are the same. If not the same, then the provided statistics and values

help users decide why and how much they differ. Eventually this work is expected to

implement the Java interfaces “comparable” and “comparator” so that the full Java

functionality can be gained seamlessly (Naftalin & Wadler, 2007).

VR Forces

Recorder 1 Recorder 2

Check for log files differences

87

Although streams can theoretically be infinite, this work treats them as finite because

tools use parts with a defined beginning and end. A continuous ongoing stream might be

saved in sections without loss of data.

The class DisStreamComparator.java has two arguments as inputs. The two

arguments are DIS streams in whatever encoding or file format they are available. Both files

will be decoded to obtain the raw PDUs. The raw PDUs are stored in buffers to make the

comparison and collection of comparison results easier.

After both streams are decoded and stored into buffers, the buffer size must be

compared. If the size is equal more tests will be run. If the size is not equal a test for checking

whether one stream is part of the other must be run. One way to achieve this is to test whether

three subsequent PDUs of the smaller buffer are within the other buffer. If this holds true, all

PDUs from the smaller buffer must be tested. If this also holds through, the smaller stream

is a subset of the larger stream.

To get a fingerprint of PDU streams it is helpful to evaluate the PDU distribution and

display it as block diagram. Eyeballing two block diagrams provides a fast way to see where

one PDU stream differs from another.

If they are equal and other tests can be run it is useful to start with a test for equal

timestamps, which is useful if both streams were recorded on the same machine. A method

iterates over the first stream, extracts the timestamp from the first PDU, and tests the first

PDU in the second stream for an equal timestamp. If this holds true for all timestamps, this

test can be repeated for PDU types and PDU content.

PDU streams captured on different machines can have different timestamps if they

do not have access to NTP. Therefore, the test for timestamps must be modified. The

modification might test for the difference in timestamps and not for absolute timestamps. A

run-time test is likely advisable to test whether it is faster to test all arguments of a PDU at

once or in subsequent test segments.

In general, collections of behavior-based streams for analysis of simulation data for

track, motion and interaction do not appear to be a common practice or expected capability.

88

Thus addition and deployment of the techniques shown in this thesis, as common tools of

analysis, has broad potential value for simulation practitioners, analysts, and end users alike.

Figure 70. Flow chart for proposed DisStreamComparator.java unit testing

utility class

89

I. VERIFICATION, VALIDATION AND ACCREDITATION (VV&A) FOR
LVC APPLICATION AND SCENARIOS

The worst error that can happen to a system is the one that goes unnoticed.

Therefore, it is critically important to install a mechanism that repeatably brings up any

issues within the development process of code that is used for LVC. For simulations, unit

testing of behavior streams holds important value and indeed might be specified as a future

contract requirement for maintaining and developing an LVC code base.

Figure 71 is derived from Figure 42 by adding two boxes for Unit Testing and a

reference pdu.dislog and the labels Verification, Validation and Accreditation to it. It

shows how recording and playing back a PDU stream can be used to test a code base for

newly introduced errors. When this is run automatically after each code change, an error

in code is automatically discovered.

Before handing out code to a contractor a reference PDU stream must be recorded

and saved to a reference pdu.dislog file. Following a software change, if recorded and

played back PDU streams are equal and the recorded pdu.dislog matches the reference

pdu.dislog, then there is enough evidence that no errors where introduced to the code

handling the PDUs.

90

Figure 71. Flowchart for using VV&A procedures to prove that code for

behavior stream handling is free of errors

DIS stream recording for unit testing of software stability, application

interoperability, and LVC replay capabilities provide powerful capabilities with great

potential benefit. It is important to continue pursuit of these potential industry-wide

benefits through further reviews in the SISO VV&A forum.

J. TROUBLESHOOTING

1. Wireshark

If one of the unit tests in Chapter V fails, then it is best to have a list of possible

solutions handy. The best tool to start with is Wireshark. Wireshark monitors network

traffic and can show whether PDUs are sent over the network. If they are, Wireshark can

display source, destination, and content. Refer to Chapter IV and the online documentation

to see how Wireshark can be utilized to capture PDUs.

PduListenerSaver.java

PduReaderPlayer.java

RecorderBase64.java RecorderPlainText.java

PlayerBase64.java PlayerPlainText.java

Pdu.dislog

PDU Stream

PDU Stream

Prepend Header

Parse Header

Prepend Header

Parse Header

RecorderAlternateEncoding.java

Prepend Header

PlayerAlternateEncoding.java

Parse Header

Reference
Pdu.dislog UnitTest

Verification Validation

Accreditation

91

2. Test Setup with OpenDis7Examples

If Wireshark does not capture any DIS packets it is helpful to check the

recorder.java, PDUListenerSaver.java or PduReaderPlayer.java for IP address and port.

The file player.java does not have to be checked. It uses the configuration from the

recorder.java.

To test a network, it is best to see whether it can handle multicast distributions. The

easiest testcase is to setup a computer with NetBeans and a clone of the MV3500 files from

https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500. In the folder OpenDis7Examples

in the MV3500 Examples project are two files that are useful to achieve a simple test setup:

EspduReceiver.java and EspduSender.java. The class EspduReceiver.java must be run first.

After the receiver has prompted to the output window that is started, EspduSender.java can

be run. EspduSender.java immediately starts to send 4 ESPDUs. Those four must now be

printed to the output window of EspduReceiver.java.

If this test is successful, EspduSender.java and EspduReceiver.java can be run on

different machines.

3. Firewall Settings

When ESPDUs are being sent from one computer to another there are often

configurations necessary that enables the machines to receive messages from each other.

For computers running Microsoft Windows 10 (Version 1909 or older), it is important to

add an incoming rule to the systems firewall allowing PDUs on Port 3000 (default) to pass.

It is likely that newer versions of Windows 10 must be configured in the same way. In

Appendix B, a manual for configuring the Windows 10 Firewall is provided.

4. AllPduRoundTripTest.java

Although AllPduRoundTripTest.java is written for the purpose of automatically

testing whether code was changed leading to inconsistent PDUs, the class can be used to

check whether there are issues with multi-threading on the test computer. When conducting

this research, a correlation was found between number of CPU cores and missing PDUs

after one run of AllPduRoundTripTest.java.

https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500

92

CPUs with 8-cores/16-threads, like AMD Ryzen 7, do not require sleep commands

within the sendOne method. Slower dual-core notebook CPUs like Core i7 (6th generation)

need a sleep time of 250 ms to capture 72 out of 72 packets.

When the sleep time is not added the CPU cannot capture all packets and the test

fails. Numbers of 52–68 out of 72 were recognized when running tests for this thesis.

A CPU with at least 4-cores/8-threads is highly recommended for working with

multi-threading using OpenDIS 7.

5. CPU Speed

For this research many runs with PDUs being recorded were made. A table shows

how many PDUs were recorded within a defined time on a scenario that comes built into

VR Forces. The scenario used for testing the CPU speed is HawaiiGround. VR Forces

workstation and computers recording PDUs are on the same network. All tablets, laptops,

or desktops run Windows 10 Pro. All computers are equipped with solid-state drives. The

Java code runs with the NetBeans console switched off to avoid irrelevant input/output

delays.. Table 6 shows the number of recorded PDUs within a run of the first three minutes

of the HawaiiGround default scenario. From the slowest to the fastest tested CPU, a

difference of about factor 30 is noticeable.

Table 6. Number of PDUs recorded within three minutes for different CPU
types

Computer CPU RAM #PDUs recorded
Surface Pro 6 Tablet Intel Core i5-8250U 8 GB 394
Surface Pro X Tablet Microsoft SQ1 16 GB 580
ThinkPad T470 Laptop Intel Core i7-7500u 32 GB 695
Customized Desktop AMD Ryzen 3 3200G 64 GB 9,015
Customized Desktop AMD Ryzen 7 2700X 32 GB 12,763

Following extensive debugging and diagnostics, the dramatic difference in

performance is likely due to poor threading implementation. Significant improvements

93

may be possible for all systems following a future performance review and enhancement

of the OpenDIS7 library.

To work with PDUs it is preferable to have a powerful computer with a desktop

CPU that can handle the threading efficiently. Unfortunately, no Intel desktop CPUs were

available to measure their performance. The only available desktop CPU available is built

into the VR Forces workstation. That CPU was already at 100% CPU load running VR

Forces. Running NetBeans with a Java class that uses many threads would have been an

unfair comparison. It might be the high CPU utilization by VR Forces that enabled

recording 710 PDUs within three minutes.

6. Test Dead Reckoning (DR)

Sometimes it can be useful to test whether the dead reckoning and entity timeout is

working properly. The easiest way to set this up is through an entity performing multiple

small turns of about 30° (Figure 72) and recording this as a stream using the technique

described in Chapter IV. The entity must then be deleted from the simulation, so that it

does not interfere with the entity being played back from the stream. To test the playback

the stream must be played back to the simulation. The entity is following the originally

planned and recorded route, doing multiple small turns.

Figure 72. One entity with a track of six waypoints containing multiple turns

set up in VR Forces in order to illustrate dead reckoning effects

94

To test the dead reckoning parameters the stream must be played back to the

simulation, but right before a small turn the network connection must be interrupted. Now

the entity follows the last known heading with the last known speed until either the network

connection works again within five seconds or the entity disappears because no ESPDU is

received for more than five seconds. When an update is received within five seconds the

entity jumps back to the position reported by the ESPDU received after the connection was

reestablished.

To give an example, the setup shown in Figure 72 is run. The PDU stream of the

runs is recorded on a second computer. A screen video capture of the run is recorded

(Figure 73, left image). After the DIS run, the entity and the track are deleted. The

simulation time is reset to the beginning, waiting for the stream to be played back. The first

playback has no issues with the network connection so the track from the playback equals

the track of the original simulation run (Figure 73, middle image). The last run played back

has in interrupted network connection starting at waypoint two. Therefore, the simulation

is starting to make use of the DR algorithm and approximating the entity’s location based

on the last known speed and heading (Figure 73, right image). The position at waypoint

three is now different from the DIS run. After the network connection is reestablished the

entity instantly jumps back to the position that was published in the first ESPDU received.

From left to right: DIS run at Waypoint 3, DIS replay at Waypoint 3, DIS replay at

Waypoint 3 with applied dead reckoning after losing network connection at Waypoint 2.

Figure 73. Images of DIS run, DIS replay, and DIS replay with DR side by
side

95

To get an better understanding of dead reckoning, the three MP4 videos the

screenshots were taken from, are available for playback in Figure 74, Figure 75, and Figure

76.

Figure 74. DIS original run of the scenario in Figure 72

Figure 75. DIS replay of the scenario Figure 72

Figure 76. DIS replay of the scenario in Figure 72 with network connection

interrupted twice

If the entity behaves like the one in the videos, the dead reckoning is working.

96

K. FUNDAMENTAL IMPORTANCE OF REPEATABLE MEASUREMENTS

According to R. W. Hamming, from his book The Art of Doing Science and

Engineering, “You get what you measure” (Hamming, 2003, Chapter 29), the decision to

measure and choice of metrics is fundamentally important for understanding and analyzing

a problem. Indeed, ongoing measurements have a profound influence on the shared

understanding of a problem. Meanwhile missing, incorrect or ill-conceived measurements

can have a confusing or confounding impact on the understanding of the problem. When

this principle is applied to the domain being studied in this thesis, it is important to know

what is broadcasted in order to have the ability to compare results for checking the capture

of all PDUs that were sent. Simply put, not knowing the ground truth leads to incorrect

measurements. Modern principles of unit testing for quality assurance (QA) and software

cybersecurity require such testing before release. Interoperability among numerous DIS

applications typically appears to be excellent, apparently conducted through extensive live

exchange of streams between systems. Given the critical nature of LVC and given that

subtle data errors can easily remain undetected during informal observation, it is likely that

current practice can be improved even further through performance of DIS interoperability

unit testing.

The DIS standard was first established by IEEE in 1995. After 25 years it remains

surprising that no public evidence of unit testing for LVC application streams can be found.

This is a major impediment to repeatable functionality, interoperability between software

products, and even the secure distribution of updated applications. Furthermore, the stakes

for success and failure could not be greater because many LVC applications are used to

access, certify, and qualify the safety and mission-critical nature of human-directed

systems providing the capacity for lethal force. No other major categories of software lack

such maturity. Further, it is questionable whether the purchase of such software is allowed

by either contracting requirements or security certification frameworks. Since DIS is an

interoperability standard mapping to all manner of different LVC protocols, this gap exists

across an entire range of LVC applications. Therefore, the addition of repeatable

measurements and well-defined metrics is fundamentally important for the future of

military modeling and simulation.

97

L. SUMMARY

This chapter underlined the importance of the principle pursued by testing, because

the worst error is the unnoticed error. It is important to know that errors can occur at any

point in the life cycle of code. The reader learned how to test and evaluate connections with

an introduction to unit testing principles and their application. The chapter also examines

how to troubleshoot common problems that can occur working with DIS-driven

applications. Knowing how to repeatably measure effectively, and why ground truth is

important, is a fundamental problem for networked simulation.

98

THIS PAGE INTENTIONALLY LEFT BLANK

99

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Unit testing of behavior streams is important, ideal, and if integrated within the

development they can be suitable as a contract requirement for maintaining and developing

LVC code bases.

Working with DIS streams and handling PDUs requires performant computers to

ensure that all PDUs are captured. Once a PDU is recorded and saved to a file there are

arbitrary many-use cases that can utilize the stream that rests in a file. Some of the use

cases were described, e.g., replaying a stream to a simulation, converting a stream to a X3D

entity with position and OrientationInterpolators or using a stream for an automated AAR

that can be run on any COTS simulation or trainer able to connect via DIS to a network.

Troubleshooting is an important part of daily business when it comes to working

with PDUs. There are many factors that influence the number of PDUs that are being sent

or recorded.

Writing PDU handling code in Java makes it available to a broad community. DIS7

still supports Java 8 to let all users make it compatible to MOTS, GOTS and COTS

simulations.

Evaluation of behavior-based LVC streams can have a major impact on training,

evaluation, exercise analysis and interoperability between Command and Control (C2) and

M&S.

Knowing how to measure is important for every field in science. It is even more

important in a field where LVC applications are used to access, certify, and qualify the

safety and mission-critical nature of human-directed systems with the capacity for lethal

force. More work is necessary in this area of LVC simulation.

100

B. RECOMMENDATIONS FOR FUTURE WORK

Extending the proof of concept of converting an entity’s movement recorded in a

DIS stream into a X3D entity driven by a position and OrientationInterpolator to multiple

entities each driven by their own interpolator can be a useful first step.

A large second step would be finding a useful representation within the X3D model

exchange, auto-generating code to handle prototype imports for all 72 PDUs and animating

them, so that a high-fidelity 3D environment would be accessible using open-source web

standards.

101

APPENDIX A. LIST OF ALL PDUS

DIS is a standard for running real-time simulations across multiple networks and

computers hosting simulations. The first standard for DIS was defined in IEEE 1278–

1993–Standard for Distributed Interactive Simulation–Application Protocols [1]. DIS is

defined in IEEE Standard 1278. The 72 different types of PDUs are:

1. ENTITY_STATE (Entity Information/Interaction)

An Entity State PDU is issued whenever an entity moves or rotates within

the world coordinate system.

2. FIRE (Warfare)

The Fire PDU is used to communicate information about firing a weapon

or expendable.

3. DETONATION (Warfare)

A Detonation PDU is issued when a fired weapon causes a detonation or

for example, a landmine explodes.

4. COLLISION (Entity Information/Interaction)

Collisions between entities are communicated by issuing a Collision PDU.

5. SERVICE_REQUEST (Logistics)

Requests for logistics support are communicated by issuing a Service

Request PDU.

6. RESUPPLY_OFFER (Logistics)

Offerings of supplies are communicated by issuing a Resupply Offer

PDU.

7. RESUPPLY_RECEIVED (Logistics)

Receipt of supplies are communicated by issuing a Resupply Received

PDU

102

8. RESUPPLY_CANCEL (Logistics)

Resupply Cancel PDUs are used to communicate the canceling of a

resupply service provided through logistics support.

9. REPAIR_COMPLETE (Logistics)

Repair Complete PDUs are used by the repairing entity to communicate

the repair that has been performed for the entity that requested repair

service.

10. REPAIR_RESPONSE (Logistics)

An entity receiving a Repair Complete PDU from its repairing entity, must

acknowledge the receipt of the repair by issuing a Repair Response PDU.

11. CREATE_ENTITY (Simulation Management)

The creation of a new entity is communicated using a Create Entity PDU.

12. REMOVE_ENTITY (Simulation Management)

The removal of an entity from an exercise is communicated with a

Remove Entity PDU.

13. START_RESUME (Simulation Management)

The Start/Resume of an entity/exercise is communicated using a Start/

Resume PDU.

14. STOP_FREEZE (Simulation Management)

The stopping or freezing of an entity/exercise is communicated using a

Stop/Freeze PDU.

15. ACKNOWLEDGE (Simulation Management)

The acknowledgment of the receipt of a Start/Resume PDU, Stop/Freeze

PDU, Create Entity PDU, or Remove Entity PDU is communicated by

issuing an Acknowledge PDU.

16. ACTION_REQUEST (Simulation Management)

103

A request from a Simulation Manager to a managed entity to perform a

specified action is communicated using an Action Request PDU.

17. ACTION_RESPONSE (Simulation Management)

When an entity receives an Action Request PDU, that entity acknowledges

the receipt of the Action Request PDU with an Action Response PDU.

18. DATA_QUERY (Simulation Management)

A request for data from an entity is communicated by issuing a Data

Query PDU.

19. SET_DATA (Simulation Management)

Initializing or changing internal state information is communicated using a

Set Data PDU.

20. DATA (Simulation Management)

Information issued in response to a Data Query PDU or Set Data PDU is

communicated using a Data PDU.

21. EVENT_REPORT (Simulation Management)

A managed entity is reporting the occurrence of a significant event to the

Simulation Manager using an Event Report PDU.

22. COMMENT (Simulation Management)

Arbitrary messages can be entered into the data stream by using a

Comment PDU. All simulation data that cannot be transported by any

other PDU can be encapsulated into a Comment PDU.

23. ELECTROMAGNETIC_EMISSION (Distributed Emission
Regeneration)

The Electromagnetic Emission PDU is used to communicate active

electromagnetic emissions, including radar and radar related electronic

warfare.

24. DESIGNATOR (Distributed Emission Regeneration)

104

The Designator PDU is used to communicate information for designation

functions to support a laser-guided weapon engagement.

25. TRANSMITTER (Radio Communications)

The Transmitter PDU is used to communicate the state of a particular

radio transmitter or simple intercom.

26. SIGNAL (Radio Communications)

The Signal PDU is used to convey the audio or digital data carried by the

simulated radio or intercom transmission.

27. RECEIVER (Radio Communications)

The Receiver PDU is used to communicate the state of a particular radio

receiver.

28. IDENTIFICATION_FRIEND_OR_FOE (Distributed Emission
Regeneration)

Information about military and civilian interrogators, transponders, and

other specific electronic systems is communicated using the IFF PDU.

29. UNDERWATER_ACOUSTIC (Distributed Emission
Regeneration)

Information about acoustic emissions is communicated using an

Underwater Acoustic PDU.

30. SUPPLEMENTAL_EMISSION_ENTITY_STATE (Distributed
Emission Regeneration)

Certain supplemental information on an entity’s physical state and

emissions is communicated using the Supplemental Emission Entity State

PDU.

31. INTERCOM_SIGNAL (Radio Communications)

The actual transmission of intercom voice or data is communicated by

using an Intercom Signal PDU.

105

32. INTERCOM_CONTROL (Radio Communications)

Detailed information about the state of an intercom device and the actions

it is requesting of another intercom device or the response to a requested

action is communicated by an Intercom Control PDU.

33. AGGREGATE_STATE (Entity Management)

Detailed information about aggregating entities and communicating

information about the aggregated entities is communicated using the

Aggregate State PDU.

34. ISGROUPOF (Entity Management)

Information about a particular group of entities is communicated by

issuing an IsGroupOf PDU.

35. TRANSFER_OWNERSHIP (Entity Management)

Information initiating the dynamic allocation and control of simulation

entities between two simulation applications is initiated by a Transfer

Ownership PDU.

36. ISPARTOF (Entity Management)

The joining of two or more simulation entities forms a single entity with

constituent parts that is communicated by issuance and acknowledgment

of the IsPartOf PDU.

37. MINEFIELD_STATE (Minefield)

The Minefield State PDU provides information about the complete

minefield.

38. MINEFIELD_QUERY (Minefield)

The Minefield Query PDU provides the means by which a simulation

queries a minefield simulation for information on the individual mines

contained in a minefield when operating in Minefield Query Response

Protocol mode.

106

39. MINEFIELD_DATA (Minefield)

Information about the location and status of a collection of mines in a

minefield is communicated using the Minefield Data PDU on an

individual mine basis.

40. MINEFIELD_RESPONSE_NACK (Minefield)

The Minefield Response NACK PDU contains information about the

requesting entity and the PDUs that were not received in response to a

query.

41. ENVIRONMENTAL_PROCESS (Synthetic Environment)

The Environmental Process PDU communicates information about the

environment, including simple environment variables, small-scale

environmental updates, and embedded processes.

42. GRIDDED_DATA (Synthetic Environment)

The Gridded Data PDU transmits information about large-scale or high-

fidelity spatially and temporally varying ambient fields and about

environmental features and processes.

43. POINT_OBJECT_STATE (Synthetic Environment)

The Point Object State PDU communicates the addition/modification of a

synthetic environment object that is geometrically anchored to the terrain

with a single point.

44. LINEAR_OBJECT_STATE (Synthetic Environment)

The Linear Object State PDU communicates the addition/modification of

a synthetic environment object that is geometrically anchored to the terrain

with one point and has a segment size and orientation.

45. AREAL_OBJECT_STATE (Synthetic Environment)

107

The Areal Object State PDU communicates the addition/modification of a

synthetic environment object that is geometrically anchored to the terrain

with a set of at least three points that come to a closure.

46. TIME_SPACE_POSITION_INFORMATION (Live Entity)

The Time Space Position Information PDU communicates information

about the live entity’s state vector. This PDU includes state information

that is necessary for the receiving simulation applications to represent the

issuing live entity’s location and movement in its own simulation.

47. APPEARANCE (Live Entity)

The Appearance PDU communicates information about the appearance of

a live entity. This includes state information that is necessary for the

receiving simulation applications to represent the issuing live entity’s

appearance in the simulation application’s own simulation.

48. ARTICULATED_PARTS (Live Entity)

The Articulated Parts PDU communicates information about an entity’s

articulated and attached parts.

49. LIVE_ENTITY_FIRE (Live Entity)

A Live Entity Fire PDU represents weapons fire in a DIS exercise

involving live entities.

50. LIVE_ENTITY_DETONATION (Live Entity)

The Live Entity Detonation PDU communicates information associated

with the impact or detonation of a munition.

51. CREATE_ENTITY_RELIABLE (Simulation Management with
Reliability)

The Create Entity Reliable PDU has the same function as the Create Entity

PDU (see 11) but with the addition of reliability service levels.

52. REMOVE_ENTITY_RELIABLE (Simulation Management with
Reliability)

108

The Remove Entity Reliable PDU has the same function as the Remove

Entity PDU (see 12) but with the addition of reliability service levels.

53. START_RESUME_RELIABLE (Simulation Management with
Reliability)

The Start Resume Reliable PDU has the same function as the Start

Resume PDU (see 13) but with the addition of reliability service levels.

54. STOP_FREEZE_RELIABLE (Simulation Management with
Reliability)

The Stop Freeze Reliable PDU has the same function as the Stop Freeze

PDU (see 14) but with the addition of reliability service levels.

55. ACKNOWLEDGE_RELIABLE (Simulation Management with
Reliability)

The Acknowledge Reliable PDU has the same function as the

Acknowledge PDU (see 15) but with the addition of reliability service

levels.

56. ACTION_REQUEST_RELIABLE (Simulation Management with
Reliability)

The Action Request Reliable PDU has the same function as the Action

Request PDU (see 16) but with the addition of reliability service levels.

57. ACTION_RESPONSE_RELIABLE (Simulation Management with
Reliability)

The Action Response Reliable PDU has the same function as the Action

Response PDU (see 17) but with the addition of reliability service levels.

58. DATA_QUERY_RELIABLE (Simulation Management with
Reliability)

The Data Query Reliable PDU has the same function as the Data Query

PDU (see 18) but with the addition of reliability service levels.

59. SET_DATA_RELIABLE (Simulation Management with
Reliability)

109

The Set Data Reliable PDU has the same function as the Set Data PDU

(see 19) but with the addition of reliability service levels.

60. DATA_RELIABLE (Simulation Management with Reliability)

The Data Reliable PDU has the same function as the Data PDU (see 20)

but with the addition of reliability service levels.

61. EVENT_REPORT_RELIABLE (Simulation Management with
Reliability)

The Event Report Reliable PDU has the same function as the Event Report

PDU (see 21) but with the addition of reliability service levels.

62. COMMENT_RELIABLE (Simulation Management with
Reliability)

The Comment Reliable PDU has the same function as the Comment PDU

(see 22) but with the addition of reliability service levels.

63. RECORD_RELIABLE (Simulation Management with Reliability)

The Record Reliable PDU is used to respond to a Record Query Reliable

PDU or a Set Record Reliable PDU.

64. SET_RECORD_RELIABLE (Simulation Management with
Reliability)

The Set Record Reliable PDU is used to set or change certain parameter

values.

65. RECORD_QUERY_RELIABLE (Simulation Management with
Reliability)

The Record Query Reliable PDU is used to communicate a request for

data in record format.

66. COLLISION_ELASTIC (Entity Information/Interaction)

Information about elastic collisions in a DIS exercise is communicated

using a Collision-Elastic PDU.

67. ENTITY_STATE_UPDATE (Entity Information/Interaction)

110

Nonstatic information about a particular entity is communicated by issuing

an Entity State Update PDU.

68. DIRECTED_ENERGY_FIRE (Warfare)

The firing of a directed energy weapon is communicated by issuing a

Directed Energy Fire PDU.

69. ENTITY_DAMAGE_STATUS (Warfare)

The Entity Damage Status PDU is used to communicate detailed damage

information sustained by an entity regardless of the source of the damage.

70. INFORMATION_OPERATIONS_ACTION (Information
Operations)

Actions initiated by an IO simulation to support interactions with other IO

simulations is communicated using the IO Action PDU.

71. INFORMATION_OPERATIONS_REPORT (Information
Operations)

The information operations status of an entity is conveyed using the IO

Report PDU.

72. ATTRIBUTE (Entity Information/Interaction)

An Attribute PDU is used to extend another PDU or communicate

attributes that are not associated with a specific PDU type.

(IEEE, 2012)

Every PDU is used for a special purpose. The semantics of each message and

interaction are documented in detail in IEEE Std 1278.1–2012 p. 31 - 34.

111

APPENDIX B. FIREWALL CONFIGURATION

A common problem blocking new users is a default firewall connection on

individual computers. This appendix shows an example adjustment that allows proper

network execution of software.

To get to the Windows Firewall Configuration right click the network icon on the

Windows taskbar (Figure 77).

Figure 77. Network Icon in Windows Taskbar

It shows a dialog were “Open Network & Internet settings” must be selected (Figure

78).

Figure 78. Network Settings Dialog

Selecting “Open Network & Internet settings” displays a window with the network

status and a link to the Windows Firewall settings (Figure 79).

112

Figure 79. Network Status window

Selecting “Windows Firewall” displays a window with the status for “Firewall &

network protection” (Figure 80).

Figure 80. Firewall & Network protection window

113

After selecting “Advanced settings” the final dialog of changes that must be made

is displayed (Figure 81).

To access the inbound rules the menu item “Inbound rules” must be chosen (Figure

81). In Figure 82 all inbound rules are displayed.

Figure 81. Windows 10 Defender Firewall window

In the Actions box on the right side of Figure 82, the action “New Rule…” must be

selected to bring up the “New Inbound Rule Wizard” (Figure 83).

114

Figure 82. Windows Defender Firewall Inbound Rules view

A single Port 3000 must be opened, so the radio button for “Port” must be selected

(Figure 83).

Figure 83. Windows Defender Firewall New Inbound Rule Wizard Type

Selection

115

In Figure 84 UDP must be selected and the port number 3000 must be added to the

text field.

Figure 84. Windows Defender Firewall New Inbound Rule Wizard Port

Selection

In Figure 85 the default must not be changed.

Figure 85. Windows Defender Firewall New Inbound Rule Wizard Allow/

Block Dialog

116

In Figure 86 the rule can be specified for different type of networks. The default

can be left unchanged.

Figure 86. Windows Defender Firewall New Inbound Rule Wizard Network

Selection

In the last window of the New Inbound Rule Wizard (Figure 87) a name for the

new rule must be provided. It is a best practice to use a descriptive name. After closing the

wizard by clicking “Finish” the new rule is displayed within the Windows Defender

Firewall Inbound Rules view (Figure 88).

117

Figure 87. Windows Defender Firewall New Inbound Rule Wizard Name

Dialog

Figure 88. Windows Defender Firewall Inbound Rules view with new DIS

Port 3000 rule

118

THIS PAGE INTENTIONALLY LEFT BLANK

119

APPENDIX C. SOURCE CODE

A. INTRODUCTION

All source code written for this thesis can be found under https://gitlab.nps.edu/

Savage/SavageTheses/-/tree/master/BrennenstuhlTobias.

B. PLAYERPLAINTEXT.JAVA

package PduStreamTools;

/**
* Copyright (c) 2008–2019, MOVES Institute, Naval Postgraduate School.
All
* rights reserved. This work is licensed under the BSD open source
license,
* available at https://www.movesinstitute.org/licenses/bsd.html
*
*/
import static PduStreamTools.RecorderBase64.COMMENT_MARKER;
import static PduStreamTools.RecorderBase64.START_COMMENT_MARKER;
import static PduStreamTools.RecorderBase64.STOP_COMMENT_MARKER;
import com.google.common.primitives.Longs;

import java.io.*;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.nio.ByteBuffer;
import java.nio.IntBuffer;
import java.nio.file.Path;
import java.util.Arrays;
import java.util.regex.Pattern;

/**
* PlayerPlainText.java created on Mar 2, 2020 MOVES Institute Naval
Postgraduate
* School, Monterey, CA, USA www.nps.edu
*
* @author Mike Bailey, jmbailey@nps.edu
* @author Tobias Brennenstuhl, tobias.brennenstuhl.gy@nps.edu
*/
public class PlayerPlainText {

 private Path disLogDirectory;
 private String ip;
 private int port;
 private Thread thrd;

 public PlayerPlainText(String ip, int port, Path disLogDirectory)
throws IOException {

120

 this.disLogDirectory = disLogDirectory;
 this.ip = ip;
 this.port = port;

 thrd = new Thread(() -> begin());
 thrd.setPriority(Thread.NORM_PRIORITY);
 thrd.setName(“PlayerThread”);
 thrd.setDaemon(true);
 thrd.start();
 }

 private Integer scenarioPduCount = null;
 private boolean showPduCountsOneTime = false;
 private int pduCount = 0;
 private DatagramSocket dsock;
 private BufferedReader brdr;
 private Long startNanoTime = null;
 private boolean paused = false;

 @SuppressWarnings(“StatementWithEmptyBody”)
 public void begin() {
 try {
 System.out.println(“Replaying DIS logs.”);
 InetAddress addr = InetAddress.getByName(ip);

 FilenameFilter filter = (dir, name) ->
name.endsWith(RecorderBase64.DISLOG_FILE_TAIL) && !name.startsWith(“.”);

 File [] fs = disLogDirectory.toFile().listFiles(filter);
 if (fs == null) {
 fs = new File [0];
 }

 Arrays.sort(fs, (f1, f2) -> {
 return f1.getName().compareTo(f2.getName());
 });

 dsock = new DatagramSocket();

 // -------------------- Begin Variables for Position
Interpolator
 CreateX3dInterpolators x3dInterpolators = new
CreateX3dInterpolators();
 CreateX3dLineSet x3dLineSet = new CreateX3dLineSet();
 byte [] globalByteBufferForX3dInterPolators = null;

 // -------------------- End Variables for Position
Interpolator
 for (File f : fs) {
 System.out.println(“Replaying “ + f.getAbsolutePath());
 brdr = new BufferedReader(new FileReader(f), 1024 * 200);
// 200kb buffer

 String line = brdr.readLine();
 while (line != null && !Thread.interrupted()) {

121

 while (paused) {
 sleep(500l); // half sec
 }
 if (line.length() <= 0); // blank lines ok
 else if (line.startsWith(COMMENT_MARKER)) {
 if (handleComment(line, f)) {
 // here if we got an end comment
 break; // out of read loop
 }
 } else {

 //Pattern splitting needed for playback of
unencoded streams
 String REGEX = “\\],\\[“;
 Pattern pattern = Pattern.compile(REGEX);
 String [] sa;
 sa = pattern.split(line);
 //Add the “]” to the end of sa [0]. It was taken
off by the split
 sa [0] = sa [0].concat(“]”);
 //Add the “]” to the end of sa [0]. It was taken
off by the split
 sa [1] = “[“.concat(sa [1]);
 if (sa.length != 2) {
 System.err.println(“Error: parsing error.
Line follows.”);
 System.err.println(line);
 byebye();
 }

 if (startNanoTime == null) {
 startNanoTime = System.nanoTime();
 }

 byte [] pduTimeBytes = null;

 String [] splitString;

 //Split first String into multiple Strings
cotaining integers
 REGEX = “,”;
 pattern = Pattern.compile(REGEX);

 sa [0] = sa [0].substring(1, sa [0].length() - 1);

 splitString = pattern.split(sa [0]);

 //Define an array to store the in values from the
string and initalize it to a value drifferent from NULL
 int [] arr = new int [splitString.length];

 String tempString = ““;

 //Test
 for (int x = 0; x < splitString.length; x++) {

122

 tempString = splitString [x].trim();

 int tempInt = Integer.parseInt(tempString);
 arr [x] = tempInt;

 }

 // Credit: https://stackoverflow.com/questions/
1086054/how-to-convert-int-to-byte
 ByteBuffer byteBuffer1 =
ByteBuffer.allocate(arr.length * 4);
 IntBuffer intBuffer = byteBuffer1.asIntBuffer();
 intBuffer.put(arr);

 pduTimeBytes = byteBuffer1.array();
 long pduTimeInterval =
Longs.fromByteArray(pduTimeBytes);

 // This is a relative number in nanoseconds of the
time of packet reception minus first packet reception for scenario.
 long targetSimTime = startNanoTime +
pduTimeInterval; // when we should send the packet
 long now = System.nanoTime();
 long sleepTime = targetSimTime - now;
//System.nanoTime(); // the difference between then and now

 if (sleepTime > 20000000) { // 20 ms //
 System.out.println(“sim interval = “ +
pduTimeInterval + ,” sleeping for “ + sleepTime / 1000000l + “ ms”);
 sleep(sleepTime / 1000000L, (int) (sleepTime
% 1000000L));
 }

 //Handle the second String
 //Split second String into multiple Strings
cotaining integers
 REGEX = “,”;
 pattern = Pattern.compile(REGEX);

 sa [1] = sa [1].substring(1, sa [1].length() - 1);

 splitString = pattern.split(sa [1]);

 //Define an array to store the in values from the
string and initalize it to a value drifferent from NULL
 arr = new int [splitString.length];

 //trim spaces, if any
 tempString = ““;

 //Test
 for (int x = 0; x < splitString.length; x++) {

 tempString = splitString [x].trim();

123

 int tempInt = Integer.parseInt(tempString);
 arr [x] = tempInt;

 //System.out.println(tempInt);
 }

 // Credit: https://stackoverflow.com/questions/
1086054/how-to-convert-int-to-byte
 ByteBuffer byteBuffer2 =
ByteBuffer.allocate(arr.length * 4);
 intBuffer = byteBuffer2.asIntBuffer();
 intBuffer.put(arr);

 byte [] buffer = byteBuffer2.array();

 //When the byteBuffer stores the arry of Integers
into the byte array it store a 7 as 0 0 0 7.
 //Therefore a shortBuffer is created where only
every forth value is stored.
 //it must be done with modulo instead of testing
for “0” because a “0” could be there as value and not as padding
 byte [] bufferShort = new byte
[byteBuffer2.array().length / 4];
 int bufferShortCounter = 0;

 for (int i = 1; i < byteBuffer2.array().length;
i++) {

 if (((i + 1) % 4) == 0) {

 bufferShort [bufferShortCounter] = buffer
[i];
 bufferShortCounter++;

 }

 }

 DatagramPacket packet = new
DatagramPacket(bufferShort, bufferShort.length, addr, port);

 globalByteBufferForX3dInterPolators = new byte
[byteBuffer2.array().length / 4];
 globalByteBufferForX3dInterPolators =
bufferShort.clone();

 dsock.send(packet);

x3dInterpolators.addPointsToMap(globalByteBufferForX3dInterPolators);

x3dLineSet.addPointsToMap(globalByteBufferForX3dInterPolators);
 pduCount++;
 if (scenarioPduCount != null) {

124

 scenarioPduCount++;
 }

 if (showPduCountsOneTime || pduCount % 5 == 0) {
 showCounts();
 }
 }

 line = brdr.readLine();
 }
 brdr.close();

 x3dInterpolators.makeX3dInterpolator();
 x3dLineSet.makeX3dLineSet();

 }
 } catch (Exception ex) {
 System.err.println(“Exception reading/writing pdus: “ +
ex.getClass().getSimpleName() + “: “ + ex.getLocalizedMessage());
 thrd = null;
 closer();
 }
 }

 private void sleep(long ms) {
 try {
 Thread.sleep(ms);
 } catch (InterruptedException ex) {
 }
 }

 private void showCounts() {
 if (scenarioPduCount != null) {
 System.out.print(pduCount + “ “ + ++scenarioPduCount + “\r”);
 } else {
 System.out.print(pduCount + “\r”);
 }
 showPduCountsOneTime = false;
 }

 private void byebye() throws IOException {
 System.out.println(“Replay stopped.”);
 closer();
 throw new IOException(“Dis Replayer parsing error”);
 }

 private void closer() {
 try {
 if (dsock != null) {
 dsock.close();
 dsock = null;
 }
 if (brdr != null) {
 brdr.close();
 brdr = null;

125

 }
 } catch (Exception ioex) {
 System.err.println(“IOException closing reader in Player”);
 }
 }

 private boolean handleComment(String s, File f) //true if we’re done
 {
 boolean ret = false;
 if (s.startsWith(START_COMMENT_MARKER)) {
 //System.out.println();
 s = s.substring(START_COMMENT_MARKER.length());
 System.out.println(s + “ “);
 showPduCountsOneTime = true; // get the first one in there
 } else if (s.startsWith(STOP_COMMENT_MARKER)) {
 showCounts();
 System.out.println();
 System.out.println(“End of replay from “ + f.getName());

System.out.println(s.substring(STOP_COMMENT_MARKER.length()));

 scenarioPduCount = 0;
 startNanoTime = null;
 ret = true;
 }
 return ret;
 }

 public void startResume() {
 paused = false;
 }

 public void stopPause() {
 paused = false;
 }

 public void end() {
 thrd.interrupt();
 closer();
 }

 public static void main(String [] args) {
 try {
 //new Player(“230.0.0.0,” 3000, new
File(“./pdulog”).toPath()).startResume();
 new PlayerPlainText(“239.1.2.3,” 3000, new File(“/Users/mike/
NetbeansProjects/open-dis7-java/examples/pdulog”).toPath());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 private static void sleep(long ms, int ns) {
 // @formatter:off
 try {

126

 Thread.sleep(ms, ns);
 } catch (InterruptedException ex) {
 System.out.println(“InterruptedException”);
 }
 // @formatter:on
 }
}

C. RECORDERPLAINTEXT.JAVA

package PduStreamTools;

import com.google.common.primitives.Longs;

import edu.nps.moves.dis7.Pdu;
import edu.nps.moves.dis7.enumerations.DISPDUType;
import edu.nps.moves.dis7.util.DisNetworking;
import edu.nps.moves.dis7.util.DisNetworking.BuffAndLength;
import edu.nps.moves.dis7.util.PduFactory;
import edu.nps.moves.dis7.util.playerrecorder.PduReceiver;
import org.apache.commons.io.FilenameUtils;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.nio.file.Path;
import java.util.Arrays;

/**
* RecorderPlainText.java created on Mar 2, 2020 MOVES Institute Naval
Postgraduate
* School, Monterey, CA, USA www.nps.edu
*
* @author Mike Bailey, jmbailey@nps.edu
* @author Tobias Brennenstuhl, tobias.brennenstuhl.gy@nps.edu
*/

public class RecorderPlainText implements PduReceiver
{
 static String DEFAULT_OUTDIR = “./pdulog”;
 static String DEFAULT_FILEPREFIX = “Pdusave”;
 static String DEFAULT_MCAST = “239.1.2.3”;
 static int DEFAULT_PORT = 3000;

 static String DISLOG_FILE_TAIL = “.dislog”;

 public static String COMMENT_MARKER = “!”;
 static String START_COMMENT_MARKER = COMMENT_MARKER + “Begin” +
COMMENT_MARKER;
 static String STOP_COMMENT_MARKER = COMMENT_MARKER + “End” +
COMMENT_MARKER;

 private BufferedWriter bwr;
 private File logFile;

127

 private DisNetworking disnet;
 private Thread receiverThrd;

 public RecorderPlainText() throws IOException
 {
 this(DEFAULT_OUTDIR,DEFAULT_MCAST,DEFAULT_PORT);
 }

 public RecorderPlainText(String outputDir, String mcastaddr, int port)
throws IOException
 {
 logFile = makeFile(new File(outputDir).toPath(),
DEFAULT_FILEPREFIX+DISLOG_FILE_TAIL);
 bwr = new BufferedWriter(new FileWriter(logFile));

 disnet = new DisNetworking(port, mcastaddr);
 // Start a thread to receive and record pdus

 receiverThrd = new Thread(()->{
 int count = 1;
 while(!Thread.interrupted()){
 try {
 BuffAndLength blen = disnet.receiveRawPdu();
 //System.out.println(““+ count++ +” Got pdu from
DisNetworking”);
 receivePdu(blen.buff,blen.length);
 }
 catch(IOException ex) {
 // this is the normal exception if you do disnet.stop()
System.err.println(“Exception receiving Pdu:
“+ex.getLocalizedMessage());
 }
 }
 });
 receiverThrd.setPriority(Thread.NORM_PRIORITY);
 receiverThrd.setDaemon(true);
 receiverThrd.start();
 }

 public void startResume()
 {
 dosave = true;
 }

 public void stopPause()
 {
 dosave = false;
 }

 public String getOutputFile()
 {
 if(logFile != null)
 return logFile.getAbsolutePath();
 return null;
 }

128

 public void end()
 {
 disnet.stop();
 receiverThrd.interrupt();

 try {
 writeFooter();
 bwr.flush();
 bwr.close();
 System.out.println();
 System.out.println(“Recorder log file closed”);
 }
 catch (IOException ex) {
 System.out.println(“IOException closing file: “ + ex.getMessage());
 }
 }

 Long startNanoTime = null;
 StringBuilder sb = new StringBuilder();
 // Base64.Encoder encdr = Base64.getEncoder();
 int pduCount = 0;
 boolean headerWritten = false;
 boolean dosave = true;

 @Override
 public void receivePdu(byte [] buff, int len)
 {
 if(!dosave)
 return;

 long packetRcvNanoTime = System.nanoTime();
 if (startNanoTime == null)
 startNanoTime = packetRcvNanoTime;

 byte [] timeAr = Longs.toByteArray(packetRcvNanoTime - startNanoTime);
 //System.out.println(“wrote time “+(packetRcvNanoTime -
startNanoTime));

 sb.setLength(0);
 //sb.append(encdr.encodeToString(timeAr));
 sb.append(Arrays.toString(timeAr));
 sb.append(‘,’);
 byte [] buffsized = Arrays.copyOf(buff, len);
 //sb.append(encdr.encodeToString(buffsized));
 sb.append(Arrays.toString(buffsized));
 try {
 if (!headerWritten) {
 writeHeader();
 headerWritten = true;
 }
 //Added a REGEX to strip all spaces from the string before writing
to file
 bwr.write(sb.toString().replaceAll(“\\s”,”“));
 bwr.newLine();

129

 }
 catch (IOException ex) {
 System.err.println(“Fatal exception writing DIS log file in
Recorder.start()”);
 throw new RuntimeException(ex);
 }
 System.out.print(++pduCount + “\r”);

 //bwr.flush();
 sb.setLength(0);
 }

 public String getLogFile()
 {
 return logFile.getAbsolutePath();
 }

 private void writeHeader() throws IOException
 {
 String template = “Beginning of DIS capture file, %s. [PDU Header],[PDU
Stream]”;
 String startComment = String.format(template, logFile.getName());
 bwr.write(START_COMMENT_MARKER + startComment);
 bwr.newLine();
 }

 private void writeFooter() throws IOException
 {
 String template = “End of DIS capture file, %s.”;
 String endComment = String.format(template, logFile.getName());
 bwr.write(STOP_COMMENT_MARKER + endComment);
 bwr.newLine();
 }

 private File makeFile(Path outputDir, String filename) throws
IOException
 {
 String bname = FilenameUtils.getBaseName(filename);
 String ext = FilenameUtils.getExtension(filename);

 Integer count = null;
 File f;
 boolean fileExists;
 outputDir.toFile().mkdirs();
 do {
 String fn = bname + (count == null ? ““ : count) + “.” + ext;
 f = new File(outputDir.toFile(), fn);
 fileExists = f.exists();
 if (count == null)
 count = 1;
 else
 count++;
 } while (fileExists);
 if (!f.createNewFile()) {

130

 System.out.println(“Cannot create dis log file at “ +
f.getAbsolutePath());
 throw new RuntimeException(“File creation error”);
 }
 return f;
 }

 /* Example test usage */
 public static void main(String [] args)
 {
 PduFactory factory = new PduFactory(); //default appid, country, etc.
 DisNetworking disnet = new DisNetworking(); // default ip and port

 Path path = new File(“./pdulog”).toPath();
 String filename = “Pdusave”;

 RecorderPlainText recorder;
 try{recorder = new RecorderPlainText();} catch(IOException ex) {
 System.err.println(“Exception creating recorder:
“+ex.getLocalizedMessage());
 return;
 }

 DISPDUType all [] = DISPDUType.values();
 Arrays.stream(all).forEach(typ-> {
 if(typ != DISPDUType.OTHER) {
 try {
 Pdu pdu = factory.createPdu(typ);
 disnet.sendPdu(pdu);
 sleep(100);
 }
 catch(Exception ex) {
 System.err.println(“Exception sending Pdu:
“+ex.getLocalizedMessage());
 }
 }
 });
 sleep(2000);

 recorder.end();
 }

 private static void sleep(long ms)
 {
 try{Thread.sleep(ms);}catch(InterruptedException ex) {}
 }
}

D. SLIDINGWINDOW.JAVA

package PduStreamTools;

import static java.lang.Math.pow;
import static java.lang.Math.sqrt;
import java.util.ArrayList;

131

import java.util.LinkedHashMap;
import java.util.List;
import java.util.Set;
import java.util.TreeMap;

/**
*
* @author Tobias Brennenstuhl @ NPS
*/
public class SlidingWindowCompression {

 private LinkedHashMap<Double, Coordinates> localMap;

 public SlidingWindowCompression(LinkedHashMap<Double, Coordinates>
localHashMap) {

 this.localMap = new LinkedHashMap<>();
 Set<Double> keys = localHashMap.keySet();
 for (Double k : keys) {
 localMap.put(k, localHashMap.get(k));
 }
 }

 public TreeMap<Double, Coordinates> doSlidingWindow() {

 System.out.println(“DISTools.Regression.doRegression()”);
 //Check whether points could be deleted to compress the stream
 //https://www.crashkurs-statistik.de/einfache-lineare-
regression/
 TreeMap<Double, Coordinates> streamMap = new TreeMap<>();
 //Copy LinkedHashMap into TreeMap to be able to pull the first
element.
 streamMap.putAll(localMap);
 TreeMap<Double, Coordinates> returnMap = new TreeMap<>();
 //TreeMap of slidingWindows will store all of the points that are
currently processed
 //use .pullFirstEntry() to get rid of the points at the beginning.
 TreeMap<Double, Coordinates> slidingWindow = new TreeMap<>();

 while (streamMap.size() > 0) {
 slidingWindow.put(streamMap.firstEntry().getKey(),
streamMap.get(streamMap.firstEntry().getKey()));
 streamMap.pollFirstEntry();

 //Calculate the mean and SD
 Set<Double> slidingWindowKeys = slidingWindow.keySet();

 if (slidingWindow.size() >= 3) {

 List<Double> tList = new ArrayList<>();
 List<Double> xList = new ArrayList<>();
 List<Double> yList = new ArrayList<>();
 List<Double> zList = new ArrayList<>();
 List<Double> phiList = new ArrayList<>();
 List<Double> psiList = new ArrayList<>();

132

 List<Double> thetaList = new ArrayList<>();

 Double [] k = new Double [slidingWindowKeys.size()];
 slidingWindowKeys.toArray(k);

 for (int i = 0; i < slidingWindow.size(); i++) {

 tList.add(i, k [i]);

 phiList.add(i, slidingWindow.get(k [i]).getPhi());
 psiList.add(i, slidingWindow.get(k [i]).getPsi());
 thetaList.add(i, slidingWindow.get(k
[i]).getTheta());
 xList.add(i, slidingWindow.get(k [i]).getX());
 yList.add(i, slidingWindow.get(k [i]).getY());
 zList.add(i, slidingWindow.get(k [i]).getZ());

 }

 //Calculate Area of Triangle
 //Credit: http://www.ambrsoft.com/TrigoCalc/Line3D/
LineColinear.htm
 for (int i = 0; i < slidingWindow.size(); i++) {

 double a = sqrt(pow(xList.get(1) - xList.get(0), 2) +
pow(yList.get(1) - yList.get(0), 2) + pow(zList.get(1) - zList.get(0),
2));
 double b = sqrt(pow(xList.get(i) - xList.get(0), 2) +
pow(yList.get(i) - yList.get(0), 2) + pow(zList.get(i) - zList.get(0),
2));
 double c = sqrt(pow(xList.get(i) - xList.get(1), 2) +
pow(yList.get(i) - yList.get(1), 2) + pow(zList.get(i) - zList.get(1),
2));
 double s = (a + b + c) / 2;
 double areaA = sqrt(s * (s - a) * (s - b) * (s - c));

 if ((areaA >= 0.1) || (tList.get(i) - tList.get(0) >=
4.0)) {
 //grab the first and the last point from the
sliding window and push it to the returnMap
 Coordinates firstPoint = new Coordinates();
 firstPoint.setX(xList.get(0));
 firstPoint.setY(yList.get(0));
 firstPoint.setZ(zList.get(0));
 firstPoint.setPhi(phiList.get(0));
 firstPoint.setPsi(psiList.get(0));
 firstPoint.setTheta(thetaList.get(0));

 Coordinates lastPoint = new
Coordinates(xList.get(i), yList.get(i), zList.get(i), phiList.get(i),
psiList.get(i), thetaList.get(i));

 returnMap.put(tList.get(0), firstPoint);
 returnMap.put(tList.get(i), lastPoint);

133

 slidingWindow.clear();

 tList.clear();
 xList.clear();
 yList.clear();
 zList.clear();
 phiList.clear();
 psiList.clear();
 thetaList.clear();

 break;
 }

 if ((areaA <= 0.1) && (tList.get(i) - tList.get(0) <=
4.0) && streamMap.size() == 0) {

 //System.out.println(“StreamMap empty. All points
left will be added. Break”);
 //grab the first and the last point from the siding
window and push it to the returnMap
 for (int j = 0; j < slidingWindow.size(); j++) {
 Coordinates leftPoints = new
Coordinates(xList.get(j), yList.get(j), zList.get(j), phiList.get(j),
psiList.get(j), thetaList.get(j));
 returnMap.put(tList.get(j), leftPoints);
 }

 break;
 }
 //System.out.println(“Area of Triangle: “ + areaA);
 }

 }

 }

 return returnMap;

 }
;

}

E. COORDINATES.JAVA

package PduStreamTools;

/**
* This class is a holder for coordinates and angles of ESPDUs to store
them in
* HashMaps
*
* @author Tobias Brennenstuhl @ NPS
*/
public class Coordinates {

134

 private double x;
 private double y;
 private double z;
 private double phi;
 private double psi;
 private double theta;

 public Coordinates(double x, double y, double z, double phi, double
psi, double theta) {
 this.setX(x);
 this.setY(y);
 this.setZ(z);
 this.setPhi(phi);
 this.setPsi(psi);
 this.setTheta(theta);

 }

 public Coordinates() {
 this.setX(0.0);
 this.setY(0.0);
 this.setZ(0.0);
 this.setPhi(0.0);
 this.setPsi(0.0);
 this.setTheta(0.0);
 }

 public double getPhi() {
 return phi;
 }

 public void setPhi(double phi) {
 this.phi = phi;
 }

 public double getPsi() {
 return psi;
 }

 public void setPsi(double psi) {
 this.psi = psi;
 }

 public double getTheta() {
 return theta;
 }

 public void setTheta(double theta) {
 this.theta = theta;
 }

 public double getX() {
 return x;
 }

135

 public void setX(double x) {
 this.x = x;
 }

 public double getY() {
 return y;
 }

 public void setY(double y) {
 this.y = y;
 }

 public double getZ() {
 return z;
 }

 public void setZ(double z) {
 this.z = z;
 }

}

F. CREATEX3DINTERPOLATORS.JAVA

package PduStreamTools;

import edu.nps.moves.dis7.EntityStatePdu;
import edu.nps.moves.dis7.Pdu;
import edu.nps.moves.dis7.enumerations.DISPDUType;
import edu.nps.moves.dis7.util.PduFactory;
import java.nio.ByteBuffer;
import java.text.NumberFormat;
import java.util.LinkedHashMap;
import java.util.Locale;
import java.util.Set;
import java.util.TreeMap;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
*
* @author Tobias Brennenstuhl @ NPS
*/
public class CreateX3dInterpolators {

 private byte [] bufferShort;

 // -------------------- Begin Variables for Position Interpolator
 private Boolean firstTimeStamp = true;
 private int firstLocalTimeStamp = 0;

 private double firstLocalX = 0;
 private double firstLocalY = 0;
 private double firstLocalZ = 0;

136

 private double firstLocalPhi = 0;
 private double firstLocalPsi = 0;
 private double firstLocalTheta = 0;

 private LinkedHashMap<Double, Coordinates> testMap = new
LinkedHashMap<>();

 //Setting up a NumberFormatter for limitting the decimal count to 3
 private NumberFormat coordinateNumberFormat =
NumberFormat.getInstance(new Locale(“en,” “US”));

 // -------------------- End Variables for Position Interpolator
 public CreateX3dInterpolators() {

 //3 significant digits equals milimeter position accuracy and
0.001 radians = 0.0572963266634555 degrees
 coordinateNumberFormat.setMaximumFractionDigits(3);

 }

 public void addPointsToMap(byte [] localBufferShort) {

 this.bufferShort = localBufferShort.clone();

 if (bufferShort [2] == 1) {

 //PDU Factory
 PduFactory pduFactory = new PduFactory();
 Pdu localPdu = null;

 localPdu = pduFactory.createPdu(bufferShort);

 // ToDO figure out how to do this! makeEntityStatePDU
 EntityStatePdu localEspdu = pduFactory.makeEntityStatePdu();
 //Put all the data we need into the localEspdu
 ByteBuffer espduBuffer = ByteBuffer.wrap(bufferShort);
 try {
 localEspdu.unmarshal(espduBuffer);
 } catch (Exception ex) {

Logger.getLogger(CreateX3dInterpolators.class.getName()).log(Level.SEVE
RE, null, ex);
 }

 double localTimeStamp = 0;
 double localX = 0;
 double localY = 0;
 double localZ = 0;

 double localPhi = 0;
 double localPsi = 0;
 double localTheta = 0;

 //Store the first timestamp to subtract it from all others
 //Same with X,Y,Z to create a local coordiante system

137

 if (firstTimeStamp) {

 firstLocalTimeStamp = localPdu.getTimestamp();
 localTimeStamp = localPdu.getTimestamp();
 firstLocalX = localEspdu.getEntityLocation().getX();
 firstLocalY = localEspdu.getEntityLocation().getZ();
 firstLocalZ = -1 * localEspdu.getEntityLocation().getY();

 firstTimeStamp = false;
 }

 localTimeStamp = localPdu.getTimestamp();
 localX = localEspdu.getEntityLocation().getX();
 localY = localEspdu.getEntityLocation().getZ();
 localZ = -1 * localEspdu.getEntityLocation().getY();
 localPhi = localEspdu.getEntityOrientation().getPhi();
 localPsi = localEspdu.getEntityOrientation().getPsi();
 localTheta = localEspdu.getEntityOrientation().getTheta();

 localTimeStamp = localTimeStamp - firstLocalTimeStamp;
 localX = localX - firstLocalX;
 localY = localY - firstLocalY;
 localZ = localZ - firstLocalZ;

 //Divide TimeStamp by 1,300,000 to get something close to a
second per Unit.
 //According to the DIS standard one tick is 3600/(2^31) seconds
~ 1.6764 µs
 //1,100,000 was derived from a stream that is 83 seconds long.
The number was adjusted to get a timesensor with 83 seconds
 //ToDo find the real conversion between TimeStampDelta and
seconds
 localTimeStamp = localTimeStamp / 1100000;

 //Only add to stream if it is an ESPDU
 //ToDo: Add support for multiple Entities
 if ((localPdu.getPduType() != null) && (localPdu.getPduType()
== DISPDUType.ENTITY_STATE)) {

 testMap.put((double) localTimeStamp, new
Coordinates(localX, localY, localZ, localPhi, localPsi, localTheta));

 }
 }

 }

 public void makeX3dInterpolator() {

 //Compression of the testMap.
 //Remove all collinear points.
 SlidingWindowCompression slidingWindowCompression = new
SlidingWindowCompression(testMap);

 TreeMap<Double, Coordinates> returnMap = new TreeMap<>();

138

 //To turn of the compression just comment the next line out and
the very next in.
 returnMap = slidingWindowCompression.doSlidingWindow();
 //returnMap.putAll(testMap);

 //Writing all values from the KeyMap to a proper Position
Interpolator String
 System.out.println(“Writing Position and Rotation Interpolator”);
 Set<Double> keys = returnMap.keySet();
 //Set<Double> keys =
tempKeyKeyValueSetPositionInterPolator.keySet();
 String positionKey = “key = ‘“;
 String positionKeyValue = “keyValue = ‘“;
 String positionInterpolatorToCopy = “<PositionInterpolator
DEF=‘EntityPosition’ “;

 String orientationKeyX = “key = ‘“;
 String orientationKeyValueX = “keyValue = ‘“;
 String orientationInterpolatorToCopyX = “<OrientationInterpolator
DEF=‘EntityOrientationX’ “;

 String orientationKeyY = “key = ‘“;
 String orientationKeyValueY = “keyValue = ‘“;
 String orientationInterpolatorToCopyY = “<OrientationInterpolator
DEF=‘EntityOrientationY’ “;

 String orientationKeyZ = “key = ‘“;
 String orientationKeyValueZ = “keyValue = ‘“;
 String orientationInterpolatorToCopyZ = “<OrientationInterpolator
DEF=‘EntityOrientationZ’ “;

 //Find highest time to do the normalization
 double lastTimeStamp = 0;

 for (Double k : keys) {

 if (k > lastTimeStamp) {

 lastTimeStamp = k;

 }
 }

 //Normalize all times in the set
 var keyKeyValueSetPositionInterpolator = new
LinkedHashMap<Double, String>();

 var keyKeyValueSetOrientationInterpolatorX = new
LinkedHashMap<Double, String>();
 var keyKeyValueSetOrientationInterpolatorY = new
LinkedHashMap<Double, String>();
 var keyKeyValueSetOrientationInterpolatorZ = new
LinkedHashMap<Double, String>();

139

 for (Double k : keys) {

 String localCoordinateString;
 String localOrientationStringX;
 String localOrientationStringY;
 String localOrientationStringZ;

 double tempX = returnMap.get(k).getX();
 double tempY = returnMap.get(k).getY();
 double tempZ = returnMap.get(k).getZ();

 double tempPhi = returnMap.get(k).getPhi() / 6.28;
 double tempPsi = returnMap.get(k).getPsi() / 6.28;
 double tempTheta = returnMap.get(k).getTheta() / 6.28;

 localCoordinateString = “ “ +
coordinateNumberFormat.format(tempX) + “ “ +
coordinateNumberFormat.format(tempY) + “ “ +
coordinateNumberFormat.format(tempZ);
 localOrientationStringX = “ 1 0 0 “ +
coordinateNumberFormat.format(tempPhi);
 localOrientationStringY = “ 0 1 0 “ +
coordinateNumberFormat.format(tempTheta);
 localOrientationStringZ = “ 0 0 1 “ +
coordinateNumberFormat.format(tempPsi);

 keyKeyValueSetPositionInterpolator.put(k / lastTimeStamp,
localCoordinateString);
 keyKeyValueSetOrientationInterpolatorX.put(k / lastTimeStamp,
localOrientationStringX);
 keyKeyValueSetOrientationInterpolatorY.put(k / lastTimeStamp,
localOrientationStringY);
 keyKeyValueSetOrientationInterpolatorZ.put(k / lastTimeStamp,
localOrientationStringZ);

 }

 keys = keyKeyValueSetPositionInterpolator.keySet();

 //Setting up the timeSensor
 //Only one timeSensor for both interpolators is needed
 String timeSensor = “<TimeSensor DEF=‘PduStreamClock’
cycleInterval=‘“;

 timeSensor += lastTimeStamp;

 timeSensor += “‘ loop = ‘true’/>“;

 //Printing the timeSensor to the console
 System.out.println(timeSensor);

 //Setting up PositionInterpolator and OrientationInterpolator
 for (Double k : keys) {
 //System.out.println(“Time: “ + k + “ Position (x,y,z) “ +
keyKeyValueSetPositionInterpolator.get(k));

140

 //PositionInterpolator
 positionKey += coordinateNumberFormat.format(k) + “ “;
 positionKeyValue += keyKeyValueSetPositionInterpolator.get(k)
+ “ “;

 //OrientationInterpolator for X (phi)
 orientationKeyX += coordinateNumberFormat.format(k) + “ “;
 orientationKeyValueX +=
keyKeyValueSetOrientationInterpolatorX.get(k) + “ “;

 //OrientationInterpolator for Y (theta)
 orientationKeyY += coordinateNumberFormat.format(k) + “ “;
 orientationKeyValueY +=
keyKeyValueSetOrientationInterpolatorY.get(k) + “ “;

 //OrientationInterpolator for Z (psi)
 orientationKeyZ += coordinateNumberFormat.format(k) + “ “;
 orientationKeyValueZ +=
keyKeyValueSetOrientationInterpolatorZ.get(k) + “ “;

 }
 positionKey += “‘ “;
 positionKeyValue += “‘ “;

 orientationKeyX += “‘ “;
 orientationKeyValueX += “‘ “;

 orientationKeyY += “‘ “;
 orientationKeyValueY += “‘ “;

 orientationKeyZ += “‘ “;
 orientationKeyValueZ += “‘ “;

 //PositionInterpolator
 positionInterpolatorToCopy += positionKey + “\n”;
 positionInterpolatorToCopy += positionKeyValue;
 positionInterpolatorToCopy += “/>“;

 //PositionInterpolator for X
 orientationInterpolatorToCopyX += orientationKeyX + “\n”;
 orientationInterpolatorToCopyX += orientationKeyValueX;
 orientationInterpolatorToCopyX += “/>“;

 //PositionInterpolator for Y
 orientationInterpolatorToCopyY += orientationKeyY + “\n”;
 orientationInterpolatorToCopyY += orientationKeyValueY;
 orientationInterpolatorToCopyY += “/>“;

 //PositionInterpolator for Z
 orientationInterpolatorToCopyZ += orientationKeyY + “\n”;
 orientationInterpolatorToCopyZ += orientationKeyValueZ;
 orientationInterpolatorToCopyZ += “/>“;

 //Printing PositionInterpolator to the console

141

 System.out.println(positionInterpolatorToCopy);

 //First Rotation must be around z axis by psi
 //Printing OrientationInterpolator for X to the console
 System.out.println(orientationInterpolatorToCopyZ);

 //Second Rotation must be around resulting y (y’) axis by theta
 //Printing OrientationInterpolator for Y to the console
 System.out.println(orientationInterpolatorToCopyY);

 //last rotation must be around resulting x (x’) axis by phi
 //Printing OrientationInterpolator for Z to the console
 System.out.println(orientationInterpolatorToCopyX);
 }

}

G. EXAMPLE OF AUTOGENERATED X3D NODES

<TimeSensor DEF=‘PduStreamClock’ cycleInterval=‘83.02751636363637’ loop
= ‘true’/>
<PositionInterpolator DEF=‘EntityPosition’ key = ‘0 0.049 0.05 0.059 0.06
0.098 0.098 0.157 0.157 0.214 0.23 0.291 0.292 0.307 0.308 0.315 0.315
0.369 0.403 0.461 0.487 0.554 0.564 0.582 0.583 0.623 0.623 0.678 0.678
0.752 0.77 0.829 0.829 0.888 0.888 0.949 0.949 0.993 1 ‘
keyValue = ‘ 0 0 0 -1.569 -2.435 -1.337 -1.663 -2.653 -1.342 -2.354 -
5.179 -0.429 -2.374 -5.43 -0.218 -1.825 -19.38 15.562 -1.824 -19.447
15.633 -1.63 -50.664 48.405 -1.631 -50.734 48.476 -1.971 -75.294 73.045
-1.994 -76.957 74.71 -2.087 -83.614 81.369 -2.086 -83.725 81.486 -
1.339 -84.888 84.524 -1.224 -84.866 84.785 0.009 -83.851 86.765 0.06
-83.785 86.823 17.157 -62.331 106.653 30.427 -46.434 122.826 52.939 -
20.165 150.983 58.56 -13.605 158.013 63.708 -7.598 164.452 64.514 -
6.658 165.46 66.272 -3.281 166.287 66.351 -3.009 166.201 66.45 12.101
150.812 66.45 12.17 150.742 66.77 41.41 121.281 66.773 41.483 121.211
67.942 76.175 88.195 68.008 78.127 86.338 68.228 84.669 80.112 68.23
84.74 80.042 56.369 72.819 63.221 56.32 72.76 63.162 32.784 44.414
34.636 32.733 44.354 34.572 15.74 24.523 13.318 12.973 21.295 9.859 ‘
/>

<OrientationInterpolator DEF=‘EntityOrientationZ’ key = ‘0 0.049 0.05
0.059 0.06 0.098 0.098 0.157 0.157 0.214 0.23 0.291 0.292 0.307 0.308
0.315 0.315 0.369 0.403 0.461 0.487 0.554 0.564 0.582 0.583 0.623 0.623
0.678 0.678 0.752 0.77 0.829 0.829 0.888 0.888 0.949 0.949 0.993 1 ‘
keyValue = ‘ 0 0 1 0.347 0 0 1 0.479 0 0 1 -0.5 0 0 1 -0.272 0 0 1 -
0.26 0 0 1 -0.247 0 0 1 -0.248 0 0 1 -0.25 0 0 1 -0.252 0 0 1 -0.252
0 0 1 -0.252 0 0 1 -0.252 0 0 1 -0.247 0 0 1 -0.186 0 0 1 -0.182 0
0 1 -0.136 0 0 1 -0.134 0 0 1 -0.141 0 0 1 -0.143 0 0 1 -0.143 0 0
1 -0.143 0 0 1 -0.143 0 0 1 -0.142 0 0 1 0.116 0 0 1 0.143 0 0 1
0.251 0 0 1 0.249 0 0 1 0.244 0 0 1 0.244 0 0 1 0.244 0 0 1 0.244 0
0 1 0.245 0 0 1 0.247 0 0 1 0.363 0 0 1 0.361 0 0 1 0.358 0 0 1 0.358
0 0 1 0.358 0 0 1 0.358 ‘ />

<OrientationInterpolator DEF=‘EntityOrientationY’ key = ‘0 0.049 0.05
0.059 0.06 0.098 0.098 0.157 0.157 0.214 0.23 0.291 0.292 0.307 0.308

142

0.315 0.315 0.369 0.403 0.461 0.487 0.554 0.564 0.582 0.583 0.623 0.623
0.678 0.678 0.752 0.77 0.829 0.829 0.888 0.888 0.949 0.949 0.993 1 ‘
keyValue = ‘ 0 1 0 0.081 0 1 0 0.183 0 1 0 0.187 0 1 0 0.145 0 1 0
0.134 0 1 0 0.118 0 1 0 0.119 0 1 0 0.122 0 1 0 0.125 0 1 0 0.125 0
1 0 0.125 0 1 0 0.124 0 1 0 0.119 0 1 0 -0.006 0 1 0 -0.017 0 1 0 -
0.111 0 1 0 -0.114 0 1 0 -0.103 0 1 0 -0.1 0 1 0 -0.1 0 1 0 -0.1 0
1 0 -0.1 0 1 0 -0.101 0 1 0 -0.188 0 1 0 -0.183 0 1 0 -0.121 0 1 0
-0.123 0 1 0 -0.129 0 1 0 -0.129 0 1 0 -0.129 0 1 0 -0.129 0 1 0 -
0.128 0 1 0 -0.126 0 1 0 0.109 0 1 0 0.105 0 1 0 0.1 0 1 0 0.1 0 1
0 0.1 0 1 0 0.1 ‘ />

<OrientationInterpolator DEF=‘EntityOrientationX’ key = ‘0 0.049 0.05
0.059 0.06 0.098 0.098 0.157 0.157 0.214 0.23 0.291 0.292 0.307 0.308
0.315 0.315 0.369 0.403 0.461 0.487 0.554 0.564 0.582 0.583 0.623 0.623
0.678 0.678 0.752 0.77 0.829 0.829 0.888 0.888 0.949 0.949 0.993 1 ‘
keyValue = ‘ 1 0 0 0.318 1 0 0 0.424 1 0 0 0.444 1 0 0 -0.351 1 0 0
-0.342 1 0 0 -0.332 1 0 0 -0.333 1 0 0 -0.334 1 0 0 -0.336 1 0 0 -
0.336 1 0 0 -0.336 1 0 0 -0.336 1 0 0 -0.333 1 0 0 -0.309 1 0 0 -
0.31 1 0 0 -0.329 1 0 0 -0.33 1 0 0 -0.326 1 0 0 -0.324 1 0 0 -0.324
1 0 0 -0.324 1 0 0 -0.324 1 0 0 -0.325 1 0 0 0.45 1 0 0 0.425 1 0 0
0.334 1 0 0 0.335 1 0 0 0.338 1 0 0 0.338 1 0 0 0.338 1 0 0 0.338 1
0 0 0.338 1 0 0 0.336 1 0 0 0.328 1 0 0 0.326 1 0 0 0.324 1 0 0 0.324
1 0 0 0.324 1 0 0 0.324 ‘ />

143

LIST OF REFERENCES

Altova. (n.d.). XML Editor: XMLSpy. Retrieved May 18, 2020, from
https://www.altova.com/xmlspy-xml-editor

AmBrSoft. (2014, December). Collinear 3-dimensional lines. http://www.ambrsoft.com/
TrigoCalc/Line3D/LineColinear.htm

Arasu, A., & Manku, G. S. (2004). Approximate counts and quantiles over sliding
windows. Proceedings of the Twenty-Third ACM Symposium on Principles of
Database Systems - PODS ’04, 286. https://doi.org/10.1145/1055558.1055598

AVM International. (n.d.). FRITZ!Box 7490. Retrieved April 20, 2020, from
https://en.avm.de/products/fritzbox/fritzbox-7490/

Blais, C. L. (2018, September). Rich semantic track (RST) ontology: Unified semantics
and pragmatics for track data interchange. https://wiki.nps.edu/pages/
viewpage.action?pageId=1082228797&preview=/1082228797/1173261305/
Blais_Defense_RichSemanticTrackJuly2018.pdf

Blender Foundation. (n.d.). Home page. Retrieved March 25, 2020, from
https://www.blender.org/

Borenstein, N. S., & Freed, N. (n.d.). Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. Retrieved May 18, 2020, from
https://tools.ietf.org/html/rfc2045

Brook, M. A. (2015). C2Sim: Complex Coalition Interoperation (Multiple Nations,
Multiple Domains). STO-EN-MSG-141. https://www.sto.nato.int/publications/
STO%20Educational%20Notes/STO-EN-MSG-141/EN-MSG-141-05.pdf

Brutzman, D. (n.d.). Videos/demonstrations/NRWG2020/README.md · master · Savage /
Spiders3dPublic. GitLab - Spiders 3D Public. Retrieved April 27, 2020, from
https://gitlab.nps.edu/Savage/Spiders3dPublic/-/blob/master/videos/
demonstrations/NRWG2020/README.md

Brutzman, D., & Daly, L. (2007). X3D. Elsevier. https://doi.org/10.1016/B978-0-12-
088500-8.X5000-7

CadStudio. (n.d.). VRMLout for AutoCAD, VRML Translator for Inventor. Retrieved May
18, 2020, from https://www.cadstudio.cz/vrmlout

Carlson, J. (2020). Coderextreme/X3DJSONLD [HTML]. https://github.com/
coderextreme/X3DJSONLD (Original work published 2015)

144

Carlsonsolutiondesign. (2019). Carlsonsolutiondesign/x3dpsail [Python].
https://github.com/carlsonsolutiondesign/x3dpsail (Original work published 2019)

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., & Ranzuglia, G.
(2008). MeshLab: An Open-Source Mesh Processing Tool. Eurographics Italian
Chapter Conference, 8 pages. https://doi.org/10.2312/
LOCALCHAPTEREVENTS/ITALCHAP/ITALIANCHAPCONF2008/129-136

Create3000. (n.d.-a). Getting Started » X_ITE X3D Browser » CREATE3000. Retrieved
May 18, 2020, from http://create3000.de/x_ite/getting-started/

Create3000. (n.d.-b). Titania. Titania X3D Editor. Retrieved March 25, 2020, from
http://create3000.de/

Debich, S. J. (2015). The role of efficient XML interchange (EXI) in Navy wide-area
network (WAN) optimization. Naval Postgraduate School.

GitHub. (n.d.-a). Extrusion not working · Issue #26 · castle-engine/view3dscene. GitHub.
Retrieved May 18, 2020, from https://github.com/castle-engine/view3dscene/
issues/26

GitHub. (n.d.-b). SenseGraphics/h3dapi. GitHub. Retrieved May 10, 2020, from
https://github.com/SenseGraphics/h3dapi

Hamming, R. W. (2003). Art of Doing Science and Engineering: Learning to Learn.
Taylor & Francis. https://books.google.com/books?id=49QuCOLIJLUC

Hill, B. W. (2015). Evaluation of efficient XML interchange (EXI) for large datasets and
as an alternative to binary JSON encodings. Naval Postgraduate School.

IEEE. (2012). IEEE Standard for Distributed Interactive Simulation—Application
Protocols. IEEE. https://doi.org/10.1109/IEEESTD.2012.6387564

Instant Reality. (n.d.). Instantreality.org. Retrieved May 10, 2020, from
https://www.instantreality.org/

Josefsson, S. (2006). The Base16, Base32, and Base64 Data Encodings.
https://tools.ietf.org/html/rfc4648

Kamburelis, M. (n.d.). View3dscene | Castle Game Engine. Retrieved May 10, 2020,
from https://castle-engine.io/view3dscene.php

Kendig, K. (2000). Is a 2000-Year-Old Formula Still Keeping Some Secrets?
https://www.maa.org/sites/default/files/images/upload_library/22/Ford/
Kendig402-415.pdf

145

Naftalin, M., & Wadler, P. (2007). Java Generics and Collections. O’Reilly.
https://books.google.com/books?id=VUSbAgAAQBAJ

NATO S&T Organization. (2018). NMSG Report Cards.
https://www.tecnologiaeinnovacion.defensa.gob.es/Lists/Publicaciones/
Attachments/224/03%20NMSG%20Report%20Cards%20last%20update%
2023%20Feb%202018.pdf

NPS Savage Research Group. (n.d.-a). Savage Developers Guide. Retrieved May 17,
2020, from https://savage.nps.edu/Savage/developers.html#

NPS Savage Research Group. (n.d.-b). Savage Developers Guide. Retrieved May 18,
2020, from https://savage.nps.edu/Savage/developers.html#Xj3D

NPS Savage Research Group. (n.d.-c). X3D Validator. Retrieved May 18, 2020, from
https://savage.nps.edu/X3dValidator

NPS Savage Research Group. (n.d.-d). X3D-Edit 3.3 Authoring Tool for Extensible 3D
(X3D) Graphics. Retrieved March 25, 2020, from https://savage.nps.edu/X3D-
Edit/

Pitch Technologies. (n.d.). Pitch Technologies – Pitch CDS Gateway – Simulation
Security Solution for HLA. Retrieved May 14, 2020, from
http://pitchtechnologies.com/products/pitch-cds-gateway/

Pullen, Dr. J. M., Douglas Corner, Dr. Samuel Singapogu, Dr. Curt Blais, Dr. Douglas
Reece, & Jim Ruth. (2019). Command and Control System to Simulation System
Interoperation: Development of the C2SIM Standard.
https://www.semanticscholar.org/paper/Command-and-Control-System-to-
Simulation-System-of-Pullen-Corner/ef10ec75b18d0b40bd2aadb8d
100f2e3473412d2

Pullen, M., Khimeche, L., & Galvin, K. (2018, December 3). Validating a Command and
Control-Simulation Interoperation Standard. https://c4i.gmu.edu/wp-content/
uploads/C4ISeminar-3Dec18.pdf

RedSim. (n.d.). DIS PDU Recorder. Redsim. Retrieved May 18, 2020, from
http://www.redsim.com/products/dis-pdu-recorder.html

Schutt, T. (2019, August). MV3500 2019 Assignments. GitLab. https://gitlab.nps.edu/
Savage/NetworkedGraphicsMV3500/-/blob/master/assignments/src/
MV3500Cohort2019JulySeptember/projects/SchuttFetterolf/FinalProject_
SchuttFetterolf_.pptx

SISO. (n.d.-a). C-DIS PDG. Compressed DIS PDG. Retrieved May 11, 2020, from
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/C-
DISPDG.aspx

146

SISO. (n.d.-b). SISO University—Bridges and Gateways. Retrieved May 28, 2020, from
https://www.sisostds.org/Workshops/SISOUniversity.aspx

SISO. (2007). SISO-REF-020-DRAFT: Reference for Guide: DIS Plain and Simple.
https://savage.nps.edu/Savage/documents/SISO-REF-020-
DRAFT%20DIS%20Plain%20and%20Simple-20131107.pdf

SISO. (2015). SISO-STD-001-2015 GRIM RPR FOM. SISO. https://www.sisostds.org/
DigitalLibrary.aspx?Command=Core_Download&EntryId=30822

Snyder, S. L. (2010). Efficient XML Interchange (EXI) compression and performance
benefits: Development, implementation and evaluation. Naval Postgraduate
School.

Sons, K. (2019). Supporting/xiot [C++]. https://github.com/Supporting/xiot (Original
work published 2013)

SourceForge. (n.d.-a). FreeWRL VRML/X3D browser. SourceForge. Retrieved May 10,
2020, from https://sourceforge.net/projects/freewrl/

SourceForge. (n.d.-b). Xj3D. SourceForge. Retrieved May 10, 2020, from
https://sourceforge.net/projects/xj3d/

Visco. (n.d.). Visco—Ocatga Player. Retrieved May 10, 2020, from https://visco.no/
OCTAGA

W3. (n.d.-a). HTML 5.2. Retrieved May 27, 2020, from https://www.w3.org/TR/html52/

W3. (n.d.-b). HTML 5.2: 1.1. Introduction. Retrieved May 27, 2020, from
https://www.w3.org/TR/html52/introduction.html#background

W3. (n.d.-c). Localization vs. Internationalization. Retrieved April 8, 2020, from
https://www.w3.org/International/questions/qa-i18n.en

Web3D. (n.d.-a). What is X3D? | Web3D Consortium. Retrieved May 18, 2020, from
https://www.web3d.org/x3d/what-x3d

Web3D. (n.d.-b). X3D Ontology for Semantic Web. Retrieved May 18, 2020, from
https://www.web3d.org/x3d/content/semantics/semantics.html

Web3D. (n.d.-c). X3D Resources. Retrieved May 18, 2020, from https://www.web3d.org/
x3d/content/examples/X3dResources.html#QualityAssurance

Web3D. (n.d.-d). X3D Tooltips version 4.0. Retrieved May 18, 2020, from
https://www.web3d.org/x3d/content/X3dTooltips.html

147

Web3D. (n.d.-e). X3D Version 4 Overview | Web3D Consortium. Retrieved May 18,
2020, from https://www.web3d.org/x3d4

Web3D. (n.d.-f). X3D-Edit—NetBeans Plugin detail. Retrieved March 25, 2020, from
http://plugins.netbeans.org/plugin/6191/x3d-edit

Web3D. (n.d.-g). X3DJSAIL: X3D Java Scene Access Interface Library. Retrieved May
18, 2020, from https://www.web3d.org/specifications/java/X3DJSAIL.html

Web3D Consortium. (2020a, April 1). Altova reports 5,367,804 users worldwide who
have XMLSpy. [Tweet]. Twitter. https://twitter.com/Web3DConsortium/status/
1245453673523638272

Web3D Consortium. (2020b, April 1). Interesting student #X3D model. [Tweet]. Twitter.
https://twitter.com/web3dconsortium/status/1245370306417418240

Williams, J. S. (2009). Document-based message-centric security using XML
authentication and encryption for coalition and interagency operations. Naval
Postgraduate School.

WireShark. (n.d.). Go Deep. Retrieved January 28, 2020, from
https://www.wireshark.org/

X3dom. (n.d.). Home Page. Retrieved May 18, 2020, from https://www.x3dom.org/

148

THIS PAGE INTENTIONALLY LEFT BLANK

149

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	20Jun_Brennenstuhl_Tobias_First8
	20Jun_Brennenstuhl_Tobias
	I. Introduction
	A. Overview
	B. Current capabilities and limitations
	C. Problem Statement
	D. Special Definitions
	1. “Repeatable”
	a. Replayable
	b. Simulation Seed Consistency
	c. Simulation Seed Variability

	2. “Compression”

	E. Motivating use cases
	1. Software Assessment
	2. Software Testing
	3. Simulation Analysis

	F. Big Data
	G. Organization of this thesis

	II. Related Work
	A. Web standards
	B. 3D Modeling
	1. Software for X3D
	a. X3D Authoring Tools
	b. X3D Players
	c. X3D Converters
	d. X3D Libraries

	2. Comparison of X3D Players
	a. Hello Germany Scene
	(1) FreeWRL
	(2) H3DViewer
	(3) Instant Reality
	(4) Octaga Player
	(5) Castle Game Engine View3DScene
	(6) Xj3D
	(7) Summary Assessment

	b. Olympic Rings X3D Model
	(1) FreeWRL
	(2) H3DViewer
	(3) Instant Reality
	(4) Octaga Player
	(5) View3DScene
	(6) Xj3D
	(7) Summary Assessment

	c. Lighthouse Scene
	(1) FreeWRL
	(2) H3DViewer
	(3) Instant Reality
	(4) Octaga Player
	(5) View3DScene
	(6) Xj3D
	(7) Summary Assessment

	3. X3D TimeSensor Node
	4. X3D PositionInterpolator Node
	5. X3D OrientationInterpolator Node

	C. Networking and Distributed Virtual Environments
	D. Command and Control System to Simulation SYSTEM Interoperation (C2SIM)
	E. PDU encodings
	F. Proprietary Encodings and Standardization Considerations

	III. Shared Behaviors in 3D Virtual Environment (VE) Simulations
	A. Introduction
	B. Distributed Interactive Simulation (DIS)
	C. Available Software
	1. OpenDIS7
	2. Redsim DIS PDU Recorder
	3. MAK Data Logger
	4. Pitch Cross Domain Security (CDS) Gateway

	D. Basic Architectural Components of DIS
	1. Entity State PDU (ESPDU) Timestamp Considerations
	2. ESPDU Location
	3. Location with Respect to the World
	4. Velocity
	5. Orientation
	6. Dead Reckoning (DR)
	7. World Coordinate System
	8. Entity Coordinate System

	E. Types of PDUS
	F. SPIDERS3D Virtual Environment (VE)
	G. Summary

	IV. Implementation and Demonstration
	A. Introduction
	B. Capturing DIS Packets
	C. Recording DIS PackETS
	1. Saving Recorded PDUs to Base64 Encoding
	2. Saving Recorded PDUs to a Parsable Plain-Text File

	D. Playing back DIS Packets
	E. Recording data from simulations
	F. Playing back Recorded DIS data to simulations
	G. Transform a PDU stream into X3D PositionInterpolator
	a. Storing PDUs
	b. Processing Stored PDUs
	c. Physics-based filtering and compression
	d. Distill concise first-order linear interpolators from streams

	H. Create a matching OrientationInterpolator
	I. X3D Implementations of PDUs
	J. Automated Analysis of PDU streams for after-action review (AAR)
	K. Summary

	V. Testing and Troubleshooting
	A. Introduction
	B. Connecting to different types of networks
	C. Test and evaluation of connections
	D. Unit Testing principles and best practices
	E. Quality Assurance (QA) of playED back Streams
	F. Unit testing of Software Package Integrity
	G. Test for numbers of packets received
	H. Comparator for DIS Streams
	I. Verification, Validation and Accreditation (VV&A) for LVC Application and Scenarios
	J. Troubleshooting
	1. Wireshark
	2. Test Setup with OpenDis7Examples
	3. Firewall Settings
	4. AllPduRoundTripTest.java
	5. CPU Speed
	6. Test Dead Reckoning (DR)

	K. Fundamental importance of repeatable measurements
	L. Summary

	VI. Conclusions and Recommendations
	A. Conclusions
	B. Recommendations for future work

	Appendix A. List of all PDUs
	Appendix B. Firewall Configuration
	Appendix C. Source Code
	A. Introduction
	B. PlayerPlainText.java
	C. RecorderPlainText.java
	D. SlidingWindow.java
	E. Coordinates.java
	F. CreateX3DInterpolators.java
	G. Example of Autogenerated X3D Nodes

	List of References
	Initial distribution list

