
 

 
[Type text] 

 
  

Generating Distributed Interactive Simulation 
(DIS) Codebases using opendis7-source-generator 

 

 
Don Brutzman, Rick Lentz, Terry D. Norbraten, Christian Fitzpatrick, Curtis L. Blais 

 
Modeling Virtual Environments Simulation (MOVES) Institute 
Naval Postgraduate School (NPS), Monterey California USA 

brutzman@nps.edu   rlentz@gmail.com  tdnorbra@nps.edu   christian.fitzpatrick@nps.edu   clblais@nps.edu  
 

Keywords: Distributed Interactive Simulation (DIS), Streaming, Command and Control (C2),  
Live Virtual Constructive (LVC) , Unit testing, Validation Verification Accreditation (VV+A) ,  

Testing Development Operations (TestDevOps), X3D Graphics, XML EXI JSON 
 

ABSTRACT:  
 
The opendis7-java library is a major upgrade now providing 100% coverage of all 72 PDU types in IEEE DIS version 7, 
as well as full coverage of over 22,000 SISO Enumeration data structures identifying diverse entities, sensors, weapons, 
domains, nationalities, etc. as Plain Old Java Objects (POJOs). A singleton threaded network interface class facilitates 
integration of DIS reading and writing together with diverse Java applications. Special emphasis has been placed on 
recording of PDU streams in multiple encodings (native binary, plaintext, base64, XML, EXI, JSON). Following the 
principle “a stream is a stream” we are beginning to show support for repeatable unit testing with expected benefits for 
sustainable Live Virtual Constructive (LVC) interoperability, Validation Verification Accreditation (VV+A), and Testing 
Development Operations (TestDevOps). A growing set of examples, course projects, and tutorial assets demonstrate 
effective opendis7-java library usage. 
 
This paper also describes DIS design rationales and interoperability standards for streaming, diverse file encodings of 
simulation data, Rich Semantic Track (RST), C2SIM bridging and a Data Strategy for Unmanned Systems.  Production of 
multiple examples demonstrates the broad utility of DIS-based track analysis, replay and visualization. 
 

1. Overview 
 

A distinguishing hallmark of the IEEE Distributed Interactive Simulation (DIS) Protocol [1] is that it provides data-centric 
representations for carefully defined data messages. Message structures, semantics and interaction patterns have only been 
standardized following extensive working-group evaluation. Implementing software that produces and parses the strict 
data messages conforming to this open standard is permitted to vary widely.  
 
The Open-DIS project is a long-running effort to produce open-source software libraries that implement the DIS protocol 
in a variety of programming languages, unrestricted for any use. Motivations for use include modeling of realistic 
representations of entities and behaviors, distributed simulation programming, and practical interoperation between 
applications to promote collaboration, research, and education.  
 
The open-dis project [3.0] has evolved over many years, slowly but steadily increasing 
in scope and capability.  Prior to the current revision, the essential design was successfully 
developed by Don McGregor at NPS and produced codebases with coverage across multiple 
programming languages:  Java, Python, JavaScript, C++, C# and ObjectiveC.  Each codebase 
worked satisfactorily and remains available on the public version-control website.  Sadly, due 
to his untimely passing, Don’s work was not fully completed and only partial coverage of the 
many Protocol Data Units (PDUs) defined by the DIS Protocol was accomplished.  The current 
generation of this code remedies these gaps, applying Don’s design across the full range of 
the IEEE DIS version 7 specification [1] and associated SISO Enumerations definitions [2]. 

  

Figure 1. OpenDIS Surfer Dude, 
with thanks to Don McGregor. 

mailto:brutzman@nps.edu
mailto:rlentz@gmail.com
mailto:tdnorbra@nps.edu
mailto:christian.fitzpatrick@nps.edu
mailto:clblais@nps.edu


 

 
[Type text] 

 
  

An innovative design expressed data structures for all IEEE DIS Protocol Data Units (PDUs) [1] in XML, permitting 
source-code generators to produce a variety of functionally similar codebase libraries. The original project provides 
support for approximately half of the DIS vocabulary using multiple programming languages (Java, Python, JavaScript, 
C++/C#) and file encodings (XML, JSON, EXI). This earlier generation of code is online and remains useful. 

 

2. opendis7-source-generator Architecture 
 

The original innovative design representing data structures for all DIS Protocol Data Units (PDUs) in XML proved to be 
an excellent basis for opendis7-source-generator [3.2] codebase refinement.  The central design takes advantage of custom 
XML definitions for each DIS family and PDU time, with amplifying annotations explaining each data structure included 
in the definitions.  Greater detail and rigorous cross-checking was added in this major refactoring of the earlier library.  
Development is ongoing.   
 
Two sources of data are utilized: the formal SISO enumerations and locally produced DIS definitions, both in XML, 
which are subsequently converted into compiled source code.  Autogeneration input and output files are highlighted in 
blue in Figure 2.  Additional utility classes are manually authored to round out all functionality needed in each library. 

 

 
Figure 2. The opendis7-source-generator Architecture emphasizes strict adherence to the IEEE DIS Protocol through definition of 

corresponding data structures that are used to autogenerate best-practice software libraries in multiple programming languages. 

SISO-REF-010 enumerations [2] are updated via formal working-group review, updated weekly, and published annually.  
They are also extensive: currently 88, 320 lines of XML source are converted into 24,651 well-documented Java classes.  
Clearly such massive assets provide a major step towards large-scale interoperability for distributed simulations.  Multiple 
output encodings are also possible.  The primary form (of course) is the well-defined binary PDU format specified by the 
IEEE DIS Protocol itself, with an example shown in Figure 3.  NPS testing and experimentation has also shown that 
alternate formats for plain text, XML and EXI are also useful.  Future support for JavaScript Object Notation (JSON), 
Compressed DIS (C-DIS), and Semantic Web relations using Terse Triple Language (Turtle) syntax are also expected. 



 

 
[Type text] 

 
  

 

 
Figure 3. Binary formats are strictly defined for a total of 72 IEEE Distributed Interactive Simulation (DIS) Protocol Data Units (PDUs).  

As an example, field lengths for the Entity State PDU (ESPDU) are shown here, with each row representing 8 bytes (32 bits). 

An XSLT stylesheet is used to re-express local definitions as a strictly designed XML Schema for DIS.  This enables DIS 
packets and streams to be defined as validatable XML documents.  XML-based files can be digitally signed and also 
encrypted using the XML Security standards.  XML definitions further enable type-aware compression of XML streams 
using the Efficient XML Interchange (EXI) standard by World Wide Web Consortium (W3C).  EXI provides best-of-
breed compaction of data along with significant increases in computational performance and memory consumption which 
are especially important for power-constrained unmanned systems. 
 
Flexibility in output formats when recording DIS stream assets is expected to facilitate the production of analytic tools 
and diverse post-processing algorithms for evaluating exercise activities and outcomes.  Becoming adept at such practices 
holds the potential of facilitating exposure of DIS behavior streams using Big Data techniques.  Much future work awaits. 
 
2.1 opendis7-java 
 
The opendis7-java library [3.2] is a major upgrade providing 100% coverage of all 72 PDU types in IEEE DIS version 7, 
with full coverage of over 22,000 SISO Enumeration data structures identifying diverse entities, sensors, weapons, 
domains, nationalities, etc. as Plain Old Java Objects (POJOs). A singleton threaded network interface class facilitates 
integration of DIS reading and writing with diverse Java applications.  Additional utility classes simplify socket 
connections, PDU recording and playback, creation of new simulation programs, and other common tasks facing 
simulation programmers.  Course project [4] and thesis testing continue to improve library reliability. 



 

 
[Type text] 

 
  

 
Annotation information from each of the XML definition files is carried forward and further augmented by the Source 
Generator routines so that both summaries and in-depth descriptions are provided in context when programming with an 
Integrated Development Environment (IDE) such as Netbeans.  Full searchable documentation is also published as 
Javadoc, both with the opendis7-full.jar distribution and online, as shown in Figure 4. 
 

 
Figure 4.  opendis7-java products include full Javadoc documentation for all enumeration and PDU classes. 

 

2.2 opendis7-python 
 

To prepare for upgrading the previously published opendis python library, a trial project was performed by Rick Lentz 
that mapped aircraft track information to DIS [3.3] [4].  Automatic Dependent Surveillance-Broadcast (ADS-B) is an 
international standard for reporting aircraft position updates, supporting shared track for safe navigation and efficient 
operations.  Data fields for ADS-B traffic provide position via latitude and longitude, course, speed, altitude, and vertical 
airspeed in feet per minute.  Data from a nearby airport was captured in September 2021 using an open-source software-
defined radio (SDR) that monitored tower control traffic, recorded ADS-B reports, and then used the original open-dis-
python library to share and save corresponding PDU streams.  Over 10 hours of recorded position-report traffic from 
aircraft within a 200 nautical-mile radius resulted in 277K PDUs recorded for thousands of aircraft.  Preliminary aircraft 
identification via EntityID, SiteID, and ApplicationID were extracted from ADS-B messages to populate each ESPDU.  
Once corresponding aviation-database information and DIS enumeration values are available, similar approaches can 
enrich such values uniquely for historical ADS-B recordings as well.  Figure 5 illustrates this process. 



 

 
[Type text] 

 
  

 

 
Figure 5. Testing legacy python DIS using a software-defined radio. Image mosaic shows (a) GNU Radio block diagram, (b) Ettus 

Research USRP B205mini-i Software Defined Transceiver, (c) ADS-B PDU Encoder console output, (d) Wireshark UDP network capture of 
ADS-B messages, (e) backyard antenna position, (f) demodulated signal response, and (g) radio transceiver box with USB connection. 

The opendis7-python source generator is again operational, restoring prior python-generation capabilities for DIS.  A full 
package is now undergoing testing and refinement, with corresponding design and autogeneration of enumeration classes 
underway.  Publication is planned for Python Package Index (PyPi) to facilitate wide availability and update capabilities 
for Python programmers.  Subsequent projects will demonstrate use of the Jupyter library to combine opendis.py and 
x3d.py programming and visualization within Web browsers, facilitating even broader re-use and new applications. 
 
When working across multiple codebases, we have found that it is not particularly difficult to adapt diverse functionality, 
enumerations, algorithms and heuristics from one programming language to another.  We expect that the functionality of 
each programming-language variant in the overall opendis7 project will evolve consistently and compatibly. 
 

3. Examples and Testing 
 

Since the opendis7 library is produced for use with other applications, the development of examples is essential.  
A growing set of examples, course projects, and tutorial assets demonstrate effective opendis7-java library usage.  A 
short set of simple examples is also provided as part of the official distribution.  Given the richness and breadth 
of the DIS Protocol, in-depth NPS examples are typically produced and published in concert with project work. 
 
NPS course MV3500 Networked Graphics and Simulation provides an in-depth look at DIS programming to 
MOVES graduate students.  This course is project based and four years of student assignments and projects are 
available online.  The opendis7 library has correspondingly matured during this interval as usage revealed issues 
and opportunities.  The new library has also been used in tutorials [5] and graduate theses [6]. 
 



 

 
[Type text] 

 
  

 
Figure 6.  NPS graduate students use the opendis7 libraries as part of the MOVES MV3500 course [4] and thesis work. 

A unit-testing suite in the opendis7-java distribution performs regression tests to confirm that ongoing codebase 
development does not break existing capabilities.  While the current set of tests is not fully comprehensive 
across the entire library, such checking is definitely useful and also provides an additional set of source-code 
examples.  Since each opendis7 library is itself autogenerated, we see no reason blocking the corresponding 
autogeneration of entire test suites.  This is an important area of future work.  If repeated across multiple 
programming languages, such a test suite for Quality Assurance (QA) might also be used to further increase 
confidence regarding interoperability across multiple programming languages and application tools. 
 
Serialization and deserialization of PDUs is the most sensitive and critical conformance task.  It can also be the 
most difficult to get exactly right.  Since routines are consistently produced for each data type whenever it might 
occur, having autogenerated routines definitely helps support implementation of correct PDU creation and 
parsing (known as unmarshalling and marshalling in Java).  When testing, round-trip creation/sending and 
receipt/parsing provides unambiguous results for the entire production chain.  Successful test results are 
committed into version control so that subsequent round-trip stream collections can be compared as regression 
tests, effectively confirming success or else isolating emergent issues.  Open-source publication of tests and 
results further helps demonstrate compatibility across a wide range of application versions, programming 
languages, and operating systems. 
 
To date, heavy-duty testing has only been performed using the opendis7-java library, which now appears ready 
for broad use.  Similar testing is expected to be performed this year using the opendis7-python library.   
 
Following lengthy development on a large architecture with two phases of autogeneration, we are transitioning 
development, issue tracking and code improvements back into public forums on GitHub. Work in progress 
includes design refinement, autogeneration of an open-dis7-python library, and track distillation to create both 
X3D animation interpolators [9] and corresponding KML waypoints [8] for visualization of entity tracks. 
 
As shown in Figure 6, we have found that the popular Wireshark open-source network-monitoring tool includes 
excellent built-in DIS support, facilitating comparison testing of proper DIS PDU serialization/deserialization. 
 



 

 
[Type text] 

 
  

 
Figure 7.  Wireshark support for the IEEE DIS Protocol is excellent, facilitating packet testing and debugging. 

 

4. DIS Streaming, Logging and File Encodings 
 

A guiding heuristic for this project is “A Stream is a Stream is a Stream.”  This is derived from Unix stream design 
which unified methods for file access and network access, a design principle that has continued as common practice in 
most modern programming languages and operating systems.  Live streams flowing across a network for a distributed 
simulation are received by each application one PDU at a time, forming a sequenced list of PDUs, which can be further 
sorted by timestamp heading found in each PDU that was produced by each participating application.  If sent to a file 
(commonly called log files) then the information is identical.  It is possible to consider such streams as “data in motion” or 
“data at rest.” A recent NPS thesis explored these principles in detail [4]. 
 

• REPEATABLE UNIT TESTING OF DISTRIBUTED INTERACTIVE SIMULATION (DIS) PROTOCOL 
BEHAVIOR STREAMS USING WEB STANDARDS 

• Brennenstuhl, Tobias, Master’s Thesis, Naval Postgraduate School (NPS), Monterey California, June 2020. 
• Abstract. The IEEE Distributed Interactive Simulation (DIS) protocol is used for high-fidelity real-time 

information sharing among simulations and trainers across the entire international Modeling and Simulation 
(M&S) community. If archivally saved and replayed, DIS streams have the potential to become a valuable source 
of Big Data. The availability of archived prerecorded behavior streams for replay, adaptation, and analysis can 
benefit an immense variety of application areas. The computer science principle “a stream is a stream” indicates 
that data in motion is equivalent to data at rest. This characteristic can enable powerful capabilities for DIS. This 
thesis presents prototypes to demonstrate how various forms of repeatability are key to gaining improved benefits 
from DIS stream analysis. Unit testing of DIS behavior streams allows confirmation of both repeatability and 
correctness when testing all manner of applications, exercises, simulations, and training sessions. A related use 
case is automated after-action review (AAR) from recorded DIS streams. This thesis also shows how a DIS stream 
is converted into autogenerated code that can animate an X3D Graphics model. Many obstacles were overcome 
during this work, and so various best practices are provided. Of note is that unit testing might even become a 
contract requirement for incrementally developing and stably maintaining Live Virtual Constructive (LVC) code 
bases. This progress provides many opportunities for future work. 



 

 
[Type text] 

 
  

 
Figure 8. OpenDIS recording of data streams with dead-reckoning (DR) linear-regression data reduction 
and corresponding production of X3D interpolators for animation playback in 3D virtual environments. 

The IEEE DIS specifications deliberately define only a single set of binary representations for application interoperability.  
Strict adherence to over-the-wire transmission of PDUs is fundamentally important, allowing completely dissimilar 
applications to cooperatively share state without restrictions on either software applications, programming languages or 
operating systems.  Conducting distributed simulations in this manner means that DIS PDUs can essentially be considered 
“data in motion” that is effectively shared with consistent, specification-defined syntax and semantics.  Recorded log files 
are “data at rest.” Certain special cases (such as mobile robots with both internal and external stream participation) can be 
considered simultaneously in motion (externally) or at rest (internally). 
 
Special emphasis has been placed on recording of PDU streams in multiple encodings (native binary, plaintext, base64 
text compression, XML, EXI, and JSON).  The availability of multiple file encodings facilitates quality assurance (QA) 
testing, the important of DIS data into other tools, and a wide range of analytic re-use. 
 
Our simulation examples are now generously issuing COMMENT PDUs as part of simulation conduct, especially to 
report significant changes in state or simulation phases.  Taken together, comments naturally build a narrative of 
simulation conduct that assists after-action review and subsequent analysis, highlighting interactions of special interest. 
 

5. Live Virtual Constructive (LVC) Archiving 
 

For a number of years this work focused on real-time streaming to and from Web browsers.  While this remains a viable 
path for progress, evolving blockers related to network security make such a path difficult.  We have instead begun to 
“dive deeper” in exploring mechanisms for LVC archiving and sharable re-use. While many DIS application libraries 
include the ability to perform logging, re-use appears to be limited and rarely performed in broader contexts.  Several 
common difficulties likely contribute to the paucity of LVC archives getting replayed and “mashed up” together. 

• Clock synchronization can be difficult in real time, and recorded timestamps do not match replay clock restarts. 
• Network configuration of distributed simulations is difficult and typically requires special configuration of 

firewalls between domains. 
• Privacy, exercise sensitivity, and scenario classification can discourage sharing. 



 

 
[Type text] 

 
  

 
Some attributes of DIS simulations lend themselves to shared state without prior preparation. 

• Simulation Management rules require announcing new entities that enter and depart a simulation.  Thus a unified 
roster of participants may be constructed as a simulation proceeds, rather than requiring advance coordination. 

• Unique identifiers help classify entities according to network hosts. 
• Precise identifiers regarding entity type help notify all participants of the physical nature of an entity. 
• Common rules for shared distributed physics allow meaningful exchange of cause-and-effect activity. 

 
The widespread use of Network Time Protocol (NTP) on modern computers has greatly improved historical difficulties 
with synchronization between DIS applications.  Nevertheless, a primary blocker inhibiting broad re-use of DIS streams 
appears to be both numerical fidelity and shared rules associated with timestamp determination.  The DIS version 7 
timestamp is 32 bits wide, providing half the data length used by most operating systems and programming languages.  
Consequently, the DIS version 7 protocol dictates that the simulation clock “roll over” to zero at the top of each hour.  
This makes any stream recording including timestamp rollover difficult (if not impossible) to consistently sort. 
 
Current work is exploring two approaches.  First, we start the timestamp clock at zero upon receipt (or delivery) of the 
first PDU in a session.  This provides sixty minutes of uninterrupted recording behavior which appears to be sufficient for 
a large number of scenarios.  When starting, posting a COMMENT PDU is a good way to report actual local clock time 
corresponding to “zero time” for the simulation.  Second, once a PDU list segment of interest is identified, establishing 
methods that routinely re-zero time to a new epoch, and possibly add time for synchronization with the LVC exercise in 
progress, is an approach that appears to offer a path for much broader LVC integration. 
 
Following the principle “a stream is a stream” we are beginning to show support for repeatable unit testing with expected 
benefits for sustainable Live Virtual Constructive (LVC) interoperability, Validation Verification Accreditation (VV+A), 
and Testing Development Operations (TestDevOps).  

 
An in-depth project using unmanned air vehicle (UAV) exercise telemetry explored decoding, parsing, conversion and 
DIS retransmission in detail. 
a. Obtained the data stream (wirelessly transmitted UAS data captured into PCAP Next Generation (PCAPNG) format) 

from a Joint Interagency Field Experimentation (JIFX) event.  
b. Transformation of MPEG-2 Transport container wireless data capture in PCAPNG format to human readable and 

other binary formats via Apache Data Format Description Language (DFDL). 
c. Extraction and transformation of Key Length Value (KLV) Local Sets (LS) embedded within the MPEG-2 Transport 

container into human readable and other binary formats via Apache DFDL library. 
d. Decoding of UAS KLV, then populating Distributed Interactive Simulation Protocol Data Units (PDUs) for re-

streaming, thereby enabling mission playback in 3D simulation environments via iHarder KLV, West Ridge Systems 
jMisb, OpenDIS, and Xj3D. 

e. Mission playback, analysis, archiving and potential injection of decoded data streams into LVC environments. 
 
Despite a lengthy process with several novel achievements and multiple opportunities for difficulty, datasets that 
previously were only parsable using proprietary software were nevertheless “unlocked” for DIS replay and downstream 
data analysis.  Figure 9 provides a replay screenshot showing telemetry playback via the opendis7-java library into the 
Xj3D open-source player for X3D graphics [10].  The full video, available at the following url, shows that this unmodified 
reconstructed motion is smooth and continuous. 
 

• KLV motion data extraction and replay using DIS streaming into an X3D scene 
• https://savage.nps.edu/videos/ScanEagle-KLV-3D-2021-10-13.mov  

https://savage.nps.edu/videos/ScanEagle-KLV-3D-2021-10-13.mov


 

 
[Type text] 

 
  

 
Figure 9. Recent NPS work unlocked binary unmanned air vehicle telemetry using Data Format Definition Language (DFDL) and then 

converted results into DIS for playback with an X3D Graphics browser.  DIS is well suited for interoperability analysis. 

6. Track 
 
Research work by Blais on Rich Semantic Track [9] examined numerous track data models in use across C2 systems, 
M&S systems, and Robotics and Automation Systems (RAS) to synthesize the essential concepts that are communicated. 
Despite decades of effort, success is elusive and interoperability is lacking: warfighters are unable to “fight as they train” 
and typically synthesize tracks through human interpretation. The research developed a formal semantic representation of 
track data to create a basis for unification of track data semantics and pragmatics. The research also examined use of the 
ontology in several operationally relevant use cases to provide a foundation for community adoption and implementation. 
 
That work focuses on achieving semantic and pragmatic interoperability across C2 systems, M&S systems, and RAS 
through a shared semantic model of track data (for semantic interoperability) and shared operations on track data (i.e., for 
pragmatic interoperability).  Multiple track dialects from diverse systems were considered for exploring data interchange 
issues and for demonstrating transformation to the formal semantic model.  All had a large “common denominator” of 
interoperability that closely corresponds to the IEEE DIS Entity State PDU and associated interaction PDUs.  Rather than 
continue with synthesizing an artificial vocabulary, our work is currently focused on DIS as the basis for interoperability. 

 
Current work is applying techniques demonstrated by Brennenstuhl [x] to utilize linear-regression techniques for curve-fit 
distillation of line segments characterizing track motion over time.  Arbitrary precision is possible using various bounds 
for accuracy, as needed by a given simulation or analysis task.  Composing, animating, and visualizing entity track via 
KML placemarks [9] or X3D interpolators [10] improves situational awareness and analytic insight.  Further progress is 
expected to generalize to a wide range of test scenarios for unmanned systems, both actual and simulated.  For further 
detail, see Data Strategy for Unmanned Systems Field Experimentation (FX), Simulation and Analysis [11]. 
 



 

 
[Type text] 

 
  

7. C2SIM 
 
Command and Control (C2) systems typically provide operators with situational awareness (SA) of the surrounding world 
via maps, data streams, imagery, etc.  Surprising as it may seem, Modeling and Simulation (M&S) systems rarely 
communicate with C2 systems for military operations.  Instead M&S systems are often relegated to training environments, 
notwithstanding widely held LVC motivations.  The Command and Control Systems – Simulation Systems Interoperation 
(C2SIM) international standard for information interchange across C2 systems, simulation systems, and robotic and 
autonomous systems (RAS) holds great promise [8]. The rehearsal and evaluation of unmanned system tracks are 
fundamentally important tasks for each of these domains.  Unclassified work to make data streams comprehensible and 
analyzable might have broad benefit.  As illustrated in Figure 9, endeavors in all three arenas of activity are 
complementary and share overlapping mutual benefits. 
 

 
 

 

Figure 10.  Command and Control (C2), Modeling and Simulation (M&S) and Autonomous Systems might 
functionally interoperate via shared information exchange using the C2SIM standard (SISO 2021). 

 

8. Planned Future Work 
 

We have begun to transition academic development, issue tracking and code improvements back into public 
forums on GitHub. Work in progress includes design refinement and autogeneration of an open-dis7-python 
library, as well as track distillation to create both X3D animation interpolators plus corresponding KML waypoints 
for track visualization. Planned work for 2022 includes future support for Compressed-DIS (C-DIS) and DISv8 
protocols, plus continued adaptation of Rich Semantic Track (RST) principles as part of an Unmanned Systems 
Data Strategy. A unified approach to bridging DIS streams across C2SIM, TENA, and HLA RPR FOM 
environments has potential to further demonstrate broad LVC interoperability. Such repetition of possible, 
planned, rehearsed, actual, replayed, and analyzed streams can provide the missing links needed for effectively 
informing real-world operations. We expect that continued exploration of real, virtual and hybrid exercise 
streaming can establish a common path for Modeling and Simulation (M+S), Command and Control (C2), and 
unmanned-systems experimentation to be actionable as repeatable Big Data across all domains. 
 

9. Conclusions and Recommendations 
 

The opendis7-source-generator is a proven approach that can work across multiple programming languages.  Working 
on open-source implementations has significantly advanced the sophistication and capabilities of autogenerated libraries.  
Further work is recommended. 
 
The opendis7-codebase is now mature and appears ready for broad re-use.  Since data-structure serialization and 
deserialization patterns are consistent for individual data types across the entire DIS vocabulary, we have only performed 
in-depth stress testing of perhaps 10 of 72 PDUs.  A group approach to reporting issues and implementing refinements is 
expected to quickly advance the maturity of the remaining PDUs. 



 

 
[Type text] 

 
  

10. Acknowledgements 
 
Much work by many students and collaborators have improved library capabilities over many years.  We especially thank 
J. Michael Bailey for numerous library improvements, and again acknowledge Don McGregor’s essential achievements.  
We look forward to further collaboration through renewed public efforts in the opendis community. 

 
11. References 
 
[1] IEEE Standard for Distributed Interactive Simulation (DIS) - Application Protocols, IEEE 1278.1-2012, 

Piscataway NJ.  https://ieeexplore.ieee.org/document/6387564  
 

[2] SISO-REF-010-2020: Reference for Enumerations for Simulation Interoperability, version 30 draft, January 2022. 
https://www.sisostds.org/ProductsPublications/ReferenceDocuments.aspx (linked at end) 

 
[3.0] opendis Project, https://github.com/open-dis  
[3.1] opendis7-source-generator Project, https://github.com/open-dis/opendis7-source-generator  
[3.2] opendis7-java Project, https://github.com/open-dis/opendis7-java  
[3.3] opendis7-python Project, https://github.com/open-dis/opendis7-python  
 
[4] MV3500 Networked Graphics Simulation, 2020, coursework at the Modeling Virtual Environments and Simulation 

(MOVES) Institute, Naval Postgraduate School (NPS), https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500  
 
[5] Brutzman, Don, Distributed Interactive Simulation (DIS) 101 Tutorial: The Basics, Interservice Industry Training 

Simulation Education Conference (IITSEC), 29 November – 3 December 2021, Orlando Florida. 
https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500/-/tree/master/conferences/IITSEC2021  

 
[6] Brutzman, Don, Tobias Brennenstuhl, and Terry Norbraten, Repeatable Unit Testing of Distributed Interactive 

Simulation (DIS) Protocol Behavior Streams Using Web Standards, presentation at SISO Simulation 
Interoperability Workshop (SIW) 2021-SIW-028, February 2021. 
https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500/-/raw/master/conferences/SIW2021/ 
BrutzmanBrennenstuhlOpenDIS7UnitTestingSiwFebruary2021Official.pdf 

 
[7] Blais, Curtis L., Rich Semantic Track (RST) Ontology: Unified Semantics and Pragmatics for Track Data 

Interchange, Ph.D. dissertation, Naval Postgraduate School, Monterey, California USA, 2018. Dissertation available 
on request.  Description and presentation online at https://wiki.nps.edu/pages/viewpage.action?pageId=1082228797  

 
[8] C2SIM Command and Control Systems-Simulation Interoperation, Simulation Interoperability Standards Organization 

(SISO), 2021.  https://www.sisostds.org/StandardsActivities/DevelopmentGroups/C2SIMPDGPSG-
CommandandControlSystems.aspx  with open-source implementation at https://openc2sim.github.io  

 
[9] KML International Standard, Open Geospatial Consortium, 2008.  Available via 

https://www.ogc.org/standards/kml  
 
[10] Brutzman, Don, and Daly, Leonard, X3D: Extensible 3D Graphics for Web Authors, Morgan Kaufmann Publishing, 

2007. 468 pages, book website is http://x3dGraphics.com  
 
[11] Brutzman, Don and Curt Blais, Data Strategy for Unmanned Systems Field Experimentation (FX), Simulation and 

Analysis, Technical Memorandum, January 2022.  
https://wiki.nps.edu/display/NOW/Data+Strategy+for+Unmanned+Systems  

 
  

https://ieeexplore.ieee.org/document/6387564
https://www.sisostds.org/ProductsPublications/ReferenceDocuments.aspx
https://github.com/open-dis
https://github.com/open-dis/opendis7-source-generator
https://github.com/open-dis/opendis7-java
https://github.com/open-dis/opendis7-python
https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500
https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500/-/tree/master/conferences/IITSEC2021
https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500/-/raw/master/conferences/SIW2021/%20BrutzmanBrennenstuhlOpenDIS7UnitTestingSiwFebruary2021Official.pdf
https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500/-/raw/master/conferences/SIW2021/%20BrutzmanBrennenstuhlOpenDIS7UnitTestingSiwFebruary2021Official.pdf
https://wiki.nps.edu/pages/viewpage.action?pageId=1082228797
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/C2SIMPDGPSG-CommandandControlSystems.aspx
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/C2SIMPDGPSG-CommandandControlSystems.aspx
https://openc2sim.github.io/
https://www.ogc.org/standards/kml
http://x3dgraphics.com/
https://wiki.nps.edu/display/NOW/Data+Strategy+for+Unmanned+Systems


 

 
[Type text] 

 
  

Author Biographies 
 

DON BRUTZMAN is a computer scientist and Associate Professor of Applied Science working at NPS in the Modeling 
Virtual Environments Simulation (MOVES) Institute, Undersea Warfare Academic Group, and Information Sciences 
Department.  Dr. Brutzman leads the Network-Optional Warfare (NOW) project exploring fleet stealth using efficient 
messaging, optical signaling, semantic coherence and ethical control of unmanned systems.  He is cochair for the Extensible 
3D (X3D) Graphics Working Group for the non-profit Web3D Consortium.  His research interests include underwater 
robotics, real-time 3D, artificial intelligence (AI) and networking. 
 
RICK LENTZ is a Machine Learning Engineer at the Joint Artificial Intelligence Center (JAIC).  He follows the frontier 
of model architecture, methodology, and benchmarks to guide DoD implementations for unstructured data solutions.  His 
recent projects have focused on applications of intelligent agent systems, human-machine knowledge graphs, large language 
models for rationale-based information retrieval, and single-click multimodal targeting.  His current research focuses on 
spatial understanding models that fuse modeling and simulation capabilities to current state environments 
 
TERRY NORBRATEN’s Naval career began in July of 1981 where he enlisted and served in various Naval Aviation 
billets as a Naval Aircrewman and Avionics Technician.  He earned an A.S. in Digital Technology in 1993 from San Diego 
City College and was subsequently selected for the Enlisted Commissioning Program.  In 1994 he graduated with a B.S. in 
Interdisciplinary Studies from Norfolk State University and was also commissioned an Ensign in the Regular Navy and 
served as a Surface Warfare Officer. In 2004, Terry earned a Masters of Science in Modeling, Virtual Environments and 
Simulation (MOVES) at the Naval Postgraduate School.  Terry retired from active duty in 2005 and has served as a Research 
Associate with the MOVES Institute by instructing in the Java and JavaScript programming languages and working on 
various software projects involving stand alone and web-based scenario generation, discrete event simulation, training and 
analysis for fleet and field requirements. 
 
CHRISTIAN FITZPATRICK received an M.S. in Modeling and Simulation from the Naval Postgraduate School in 2009.  
Within the Department, Mr. Fitzpatrick teaches Advanced Simulation Networking. Prior to joining the Faculty at NPS, Mr. 
Fitzpatrick served in the Marine Corps as a KC-130 pilot and Air Support Control Officer.  After receiving his degree from 
NPS in 2009, he served at Marine Corps Combat Development Command where he developed scenarios for combat 
simulations to analyze the Expeditionary Fighting Vehicle (EFV) and Joint Light Tactical Vehicle (JLTV) using DoD-
approved tools including COMBATXXI. He also spent 3 years at the Office of Naval Research (ONR) where he served as 
a Program Manager and established a tactical cyberspace/electronic warfare S&T development program.  As a Faculty 
Research Associate in the MOVES Institute, his research thrusts include networking, LVC simulations, and system 
interoperability for TT&E. 
 
CURTIS L. BLAIS is a member of the research faculty of the Naval Postgraduate School’s Modeling, Virtual 
Environments, and Simulation (MOVES) Institute. He has over 47 years of experience in modeling and simulation 
development, management, education, and research. Dr. Blais is active in the Simulation Interoperability Standards 
Organization, serving in organizational committees and several working groups, including the Command and Control 
Systems – Simulation Systems Interoperation (C2SIM) combined Product Development Group/Product Support Group. He 
earned his doctorate at the Naval Postgraduate School in MOVES and holds Bachelor of Science and Master of Science 
degrees in Mathematics from the University of Notre Dame. 

 


	2. opendis7-source-generator Architecture
	2.1 opendis7-java
	2.2 opendis7-python

	3. Examples and Testing
	4. DIS Streaming, Logging and File Encodings
	5. Live Virtual Constructive (LVC) Archiving
	6. Track
	7. C2SIM
	8. Planned Future Work
	9. Conclusions and Recommendations
	10. Acknowledgements
	11. References
	Author Biographies

