
@IITSEC NTSAToday IITSEC IITSEC IITSEC

Distributed Interactive Simulation (DIS) 101: The Basics

Don Brutzman and Chris Fitzpatrick
Modeling, Virtual Environments, Simulation (MOVES) Institute

Naval Postgraduate School (NPS), Monterey California USA
brutzman@nps.edu christian.fitzpatrick@nps.edu

Presenter
Presentation Notes
Note that this tutorial is essential to core design of current Modeling and Simulation architectures. It complements I/ITSEC tutorials on Test and Training Enabling Architecture (TENA) and High Level Architecture (HLA).

Intended Audience. Practitioners interested in networking, simulation interoperability and shared virtual environments using open standards.

Abstract. The Distributed Interactive Simulation (DIS) protocol is a well-established IEEE standard for packet-level exchange of state information between entities in military simulations. DIS facilitates simulation interoperability through a consistent over-the-wire format for information, widely agreed upon constant enumeration values, and community-consensus semantics. Anyone can obtain the IEEE-1278 standard and implement their own compliant, interoperable, DIS application. A large variety of tools and codebases simplify this effort, and enable multi-architecture integration of simulations using the DIS stand baseline. DIS focus begins with real-time, physics-based, entity-scale simulations, providing state update and interaction mechanisms which can scale to large virtual environments. This tutorial is a "DIS 101" introduction for software implementers and an introduction to the DIS philosophy for simulation systems integrators. Examples are provided using the open-source Open-DIS library for DIS v7 and Enumerations support, available in multiple programming languages. Ongoing work is included in unit testing of DIS streams, and Web-based implementations using X3D Graphics, as well as Compressed DIS and DISv8 development.

Grateful acknowledgement: this tutorial was originally developed by Don McGregor NPS.

mailto:brutzman@nps.edu
mailto:christian.fitzpatrick@nps.edu
https://my.nps.edu/web/moves
https://www.nps.edu/

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Learning Objectives

The learner will be able to…

 Identify what standards are used by distributed simulations for military use.

 Identify what types of communication protocols are used for various networks.
 Identify what aspects needs to be standardized, and what aspects can be

customized, to support diverse simulations with differing models and goals.
 Identify how DIS techniques for dead reckoning (DR), visual smoothing and

distributed collision detection can reduce network traffic.

 Learn how to apply new capabilities expected for Compressed DIS and DISv8.

2

Presenter
Presentation Notes
Discuss how connecting all manner of simulations, namely Live Virtual Constructive LVC, is the necessary path for connecting to Command and Control (C2) systems. Establishing such connections between traditionally separate domains is central to conference theme,
“The Future is Now“

Note that, for example, common tutorial topic “What coordinate systems are used?” is also central to requirements for connecting C2 and M+S.
Slide 2 and last slide are identical.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Topics

 What is distributed simulation? Scaling from isolated networks to the Web.
 Military modeling & simulation, distributed simulation standards, interoperability
 Underlying TCP/IP network requirements common to all distributed simulations
 DIS: goals, design principles, basic structure, Entity State PDUs explained
 DIS: distributed identification of all participants, Entity Types and Entity IDs
 DIS: tracks and Coordinate Systems, real time clocks, packet PDUS, code APIs
 DIS: collisions, shooting, Dead Reckoning, Smoothing, visual synchronization
 DIS and Open-DIS: DIS standard development, ongoing implementation efforts
 Resources and References for further activity, including latest software builds

3

Presenter
Presentation Notes
Communicate that this is a broad and deep topic. Much information is available. Ace card for participants: DIS “just works” across many systems, is much tested and strives to match/represent real-world activities. So experience in each domain being simulated is useful.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Distributed Simulation Terms

 A distributed simulation runs on multiple cooperating hosts on the network.

 State information describes the position, orientation, and other information
about an entity at a point in time.

 Live, Virtual, Constructive (LVC) simulation involves different hosts doing
different aspects of simulation in one cooperative system.
 Live: Real people, real systems
 Virtual: Real people, simulated systems (human in loop)
 Constructive: simulated people, simulated systems (AI controlled)

4

Presenter
Presentation Notes
Emphasize that terminological clarity is always important when modeling cross-domain interactions.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Live, Virtual, Constructive (LVC) Example

 Automatic Identification System (AIS) is a standard for transmitting the current
position of commercial ships in the real world; ships have a transmitter and
receiver on board and send information in a standard format. This is a live
component (real system, real people).

 Ship simulators portray a simulated virtual view of navigation from the
perspective of a ship’s bridge, perhaps in a “cave” environment with wall-sized
screens. This is a virtual component (real people, simulated system).

 We can also inject simulated, computer-generated ships controlled by AI into
the simulation. This is a constructive component (simulated system controlled
by simulated people).

 As M+S LVC connects with C2 for warfighters, ever-greater synergies emerge.

5

Presenter
Presentation Notes
Stress final point, encourage participants to consider LVC in their individual domains of interest.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Participants may be
local or distributed

Live, Virtual, Constructive (LVC) Example,
Illustrated

Virtual: bridge simulator Live: AIS feed

Single
Shared LVC

Environment

Constructive: computer-
generated ship traffic,
controlled by AI agents

6

Presenter
Presentation Notes
This diagram is not showing “one way to do things,” rather many alternative variations are possible depending on scenarios of interest.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

What Do We Want to Do?

 DIS has been running and evolving since early 1990s, remains widely used in many applications.

 People who want to learn about Distributed Interactive Simulation (DIS) usually are in the
“virtual” or “constructive” domains, though it can also be used in the live domain.
 They want to simulate ships, tanks or other entities in 3D world, controlled by humans or AI.

 We need to exchange state information between hosts on the network about entities in the world.
 To view someone else in the simulation, we need to know their position, orientation, and

other state information, and this information needs to be sent to us by them.

 Typically entities are controlled by different hosts that are connected via a network. The state
information is usually exchanged over the TCP/IP protocol.

7

Presenter
Presentation Notes
Shared state is the essence of a distributed virtual environment. If participants can’t communicate well, then they can’t interact well.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

State Information in Distributed Simulations

8

State Information

Location, Orientation, Velocity, etc of Entities
Sent over a TCP/IP network

Tank Simulator Helicopter Simulator

Presenter
Presentation Notes
The tank & helicopter in the simulation are controlled by different hosts. The simulation running the tank needs to know about the helicopter’s position, and the helicopter needs to know about the tank’s position
We have to come to all sorts of agreements to exchange information. It’s harder than it looks!
We want the information to be in a standard format, because we don’t want to be locked into one vendor

@IITSEC NTSAToday IITSEC IITSEC IITSEC

What’s So Hard About That?

 The format of state update messages needs to be exactly specified.
 What coordinate system should you use? You need one that works well for ground and air

systems, and can handle curvature of the earth issues.
 Text or binary format messages?
 The order in which the fields appear?

 Network issues: what happens if a message is dropped?
 Scalability issues: how can we get a reasonable number of entities to participate?

 Latency: can we keep the message delay reasonable?
 Do all participants have a consistent, coherent operational picture?

9

Presenter
Presentation Notes
Convey that all of this complexity must be handled sensibly and sharably, which is design basis of DIS.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Distributed Simulation Standards

 There are many ways to exchange the state information, but we want a
standard way so we can interoperate with simulations from many vendors
rather than being locked in to one. We don’t want to use only one vendor’s
proprietary method, for which we will pay dearly.

 In the case of defense modeling and simulation, the “big three” are
 TENA: Test and Training Enabling Architecture
 HLA: High Level Architecture
 DIS: Distributed Interactive Simulation

 TENA and HLA borrow many semantic concepts from DIS. Understanding DIS
has many carry-over benefits when working with other standards.

10

Presenter
Presentation Notes
Stable interoperability is essential for long-term use, re-use, sharing and advancing progress.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

State Information Exchange Standards

11

Controlling Host Receiving Host

DIS

HLA

TENA

The controlling host sends the state information update
via one of the standards to other hosts

State Information Updates

@IITSEC NTSAToday IITSEC IITSEC IITSEC

TENA

 Used on ranges; often the “L” in Live-Virtual-Constructive simulations.
 Designed for real time and embedded systems, real sensor systems, etc.
 In effect it is thinly disguised CORBA distributed objects with multiple

new features to help it work in a simulation environment.
 Can gateway it to other standards, such as DIS or HLA.
 See http://tena-sda.org

12

Presenter
Presentation Notes
Encourage participation in all three tutorials, they are complementary

http://tena-sda.org

@IITSEC NTSAToday IITSEC IITSEC IITSEC

High Level Architecture (HLA)

 HLA is very general and intended to cover most defense modeling domains
including training, analysis, and engineering in addition to virtual worlds.

 Participants communicate via an agreed-upon Federation Object Model (FOM)
and an API associated with a Run-Time Infrastructure (RTI).

 Specification is maintained by SISO (http://sisostds.org), is IEEE standard 1516
and has implementations by
 MAK (http://www.mak.com),
 Pitch (http://www.pitch.se),
 Portico (older version) (http://porticoproject.org) and others.

 http://www.pitch.se/hlatutorial is a good introduction to HLA.

13

Presenter
Presentation Notes
Encourage participation in all three tutorials, they are complementary

http://www.mak.com/
http://www.pitch.se
http://porticoproject.org
http://www.pitch.se/hlatutorial

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Distributed Interactive Simulation (DIS)

 DIS was the first standard to tackle these problems in a systematic way.
 Originated in the SIMNET project in the 80’s. DARPA supported converting the

SIMNET research into a standard; SISO developed the standard and took it to
IEEE for approval.

 Anyone can get standard from IEEE, implement it, and participate in simulation.

 Development of standard continues; updated DIS standard version 7 is the
latest approved version. SISO maintains DIS, presents it to IEEE for approval.

 Substantial commercial support, open source implementations, many home
grown implementations of portions of the standard.

14

Presenter
Presentation Notes
Encourage participation in all three tutorials, they are complementary

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Distributed Interactive Simulation (DIS) functionality

 What does DIS support?
 A standardized way to exchange messages about entities in a

virtual world

 Common semantics for coordinate systems and other information,
such as how to describe and specify entities

 Common practices to ensure interoperability

15

Presenter
Presentation Notes
Essentials. All the detail flows from these design principles. Meaningful results are not otherwise possible.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Networking: the Protocol Stack

 DIS defines the format of the messages, but doesn’t specify how to get
the messages from one host to another. Almost always this is done via
TCP/IP network protocol.

 Knowing network basics helps you be a better simulation designer/user!

16

DIS
software
libraries

Message passing
between hosts:
TCP/IP protocol,
implemented by
each host machine’s
operating systemLink and Physical

IP
TCP Sockets

Application
UDP Sockets

Presenter
Presentation Notes
TCP/IP is the underlying substrate for almost all network communications. Web servers, streaming video, email and almost everything else you use on the internet all rely on TCP/IP
Users typically implement things at the “application layer” at the top of the stack. This is where DIS lives
Somewhat confusingly, the DIS protocol is considered part of the “application layer” in addition to what users think of as the “application”, the visual simulation
The lower layers of the stack are responsible for delivering messages. We can usually ignore this part; it’s all handled by operating system vendors
We interact with the TCP/IP stack via either the User Datagram Protocol (UDP) or Transmission Control Protocol (TCP) APIs.
UDP messages are like postcards: they contain a fairly small amount of data, and we need to address them to a destination
We can send them to one host (based on IP number): called unicast
We can send them to all hosts on a local network: called broadcast
We can send them to those hosts, on the local network or not, that are interested in the message: called multicast
DIS messages are contained inside of UDP packets and can use any one of these addressing schemes. Broadcast is very common. Multicast is better.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

TCP/IP and UDP

 TCP sockets have higher latency, higher jitter (variation in latency), and doesn’t scale to
large numbers of hosts as well.

 UDP sockets have lower latency, lower jitter, scales to large numbers of participants better,
but are unreliable.

 DIS typically uses UDP.
 Hold on—UDP is unreliable? What’s up with that?

 Individual UDP messages may be dropped by the network; there’s no guarantee that
each UDP message will be delivered. This tradeoff achieves lower latency and jitter,
which in turn brings better scalability.

 Not as big a deal as it might seem. If we get position updates from entity every 1/30th

of a second, does it matter if we drop one? Better information is coming along shortly,
so why resend dropped messages?

17

Presenter
Presentation Notes
In some ways TCP/UDP are yin/yang of networking. Helping participants understand this point helps them comprehend many other DIS design decisions.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS Messages

 We know what we want to do: send a message that tells another host what the
state of an entity is.

 We know how we do this: send the message via TCP/IP, typically in a UDP
message over broadcast or multicast.

 What is actual format of the messages? This is specified by the DIS standard.
 There are dozens of possible messages to send, relating to everything from logistics to

electronic warfare to radio communications.
 Each message type is called a “Protocol Data Unit” (PDU).

18

Presenter
Presentation Notes
PDUs are messages. So are email, SMS text, 2-way web-browser interactions, and even object-oriented method invocations.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS Messages

PDU

Entity Information

Entity State Collision

Warfare

Fire Detonate

…

Several dozen different message types (called Protocol Data
Units, or PDUs) to describe entity movement, collisions,
combat, radio communications, logistics, and many more.
The Entity State PDU is the most widely used.

19

Presenter
Presentation Notes
The world is a big place, many years of work by M+S community have established a rich vocabulary of messages supporting modeling and information sharing that reflects the real world.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

PDU Families are Diverse

Credit: from SISO slideset
IEEE 1278 Distributed
Interactive Simulation (DIS)
by Mark McCall and Bob
Murray, 26 May 2010.

Many people have used and
extended DIS Protocol so
you can likely find what your
system needs to do.

20

Presenter
Presentation Notes
Ask participants if they have knowledge of any of these domains.

https://www.sisostds.org/DesktopModules/Bring2mind/DMX/API/Entries/Download?Command=Core_Download&EntryId=29289&PortalId=0&TabId=105

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS Messages: Entity State PDU

 We use ESPDU when want to inform other hosts of the position of an entity we
control—the most common PDU

21

Entity sends ESPDU with
• Unique ID
• Position (xyz) in standard coordinate system
• Orientation
• What type of vehicle it is
• More….

Presenter
Presentation Notes
ESPDU is workhorse PDU, and also affects how other PDUs are interpreted.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Site, Application, Entity ID: a Unique Identifier

 Before telling entities “hey you there, do that”
we need a way to differentiate between entities.

 The entity ID is a unique identifier for each
simulation object in the world. In DIS this is
accomplished via a triplet of three numbers:
Site, Application, and Entity ID numbers.

 This triplet of three numbers taken together
must be unique for each entity.

22

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Entity IDs

 Example: before the simulation starts we agree, simulation-wide, on the
following arbitrary numbers. Here are simple possibilities:

23

Site Number
China Lake 42
Norfolk 17
Orlando 23

Application Number
YoYoDyne M1A2 Simulator 112
ACME UCAV Simulator 417
JCATS 512

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Entity IDs

24

Tank Simulator
EID: (42, 112, 18)
EID: (42, 112, 19)

Helicopter
EID: (17, 417, 18)

ACME (417) simulator at
Norfolk (17) controls a
Helicopter (entity 18)

YoYoDyne simulator (112) at
China Lake (42) controls two
distinct tanks, 18 and 19

Presenter
Presentation Notes
Aha moment: triples designate “who” sent a PDU and can identify any participant uniquely.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Entity Type

 We may need some other information. What if we want to
draw this entity? We need to know what kind of entity this is—
a tank, a helicopter, a ship?

 This is done via a field called the Entity Type, which in turn
depends on a SISO document called the “Enumeration and
Bit Encoded Values” (EBV).

 The EBV document is a long listing of standardized record
values that lets us identify military hardware.

25

Presenter
Presentation Notes
Designates “what” kind of thing this entity is.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Entity Type

26

{
Kind: 1 (entity)
Domain: 1 (Land)
Country: 225 (US)
Category: 1 (Tank)
Subcategory:1 (M1)
Specific: 6 (M1A2)

}

Whenever a DIS message has an entity type record with the above settings
we know it’s referring to an M1A2 tank. What the numbers are doesn’t matter, as
long as all participants agree on what they mean. SISO maintains the master list
of arbitrary numbers, called the EBV document.

Presenter
Presentation Notes
Subcategories flesh out the details and variations corresponding to each entity type.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Entity Type From EBV Document

27

Presenter
Presentation Notes
Note this community has met for years. EBV values available in Word, XML and derivative forms.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Entity Type

 The EBV document has gone through many versions as new hardware has
been added. An important checkpoint for consistency: all participants in the
simulation should agree on the current version of EBV document being used.

 In reality this can sometimes be hard; some simulations have not been updated
to reflect new EBV documents, and sometimes those implementing a simulation
simply make up numbers, and no simulation implements all entities in the EBV.

 You may need a gateway such as Joint Simulation Bus (JBUS) to act as a
“shim” connection between simulations and change entity type values to match
what is expected. The gateway can rewrite the entity type values in the PDUs to
force them to match expectations.

 The EBV enumerations are also often used in HLA RPR-FOM and in TENA.

28

Presenter
Presentation Notes
Note that EBV for Entity Type goes to great pains to maintain backwards compatibility, so almost everything stays stable over time.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Entity State PDU: Position

 What does it mean if we say an entity is at (x, y, z)? This has no meaning
without a coordinate system. We need to agree on one, and where the origin is.

 DIS chose to use a Cartesian, geocentric coordinate system because

29

It’s easy to convert from that to other
coordinate systems, such as geodetic
(latitude, longitude, altitude) or military
Systems such as MGRS.

Presenter
Presentation Notes
If you want to specify the location of an entity in DIS, you have to specify it in terms of how far from the center of the earth it is. You should also agree on the shape of the earth (eg WGS-84) and terrain.
Using geocentric coordinates may seem strange, but DIS has to account for curvature of the earth issues if the simulation demands it. The geospatial people have done the math to convert geocentric coordinates to latitude, longitude, altitude, MGRS, or other coordinate systems. The geocentric coordinate system is often used in TENA and HLA
SEDRIS has provided an open source framework for dealing with these issues in their Spatial Reference Model (http://www.sedris.org/hdr1trpl.htm)

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Coordinate Systems

 Very often simulations set up a local,
flat-plane coordinate system at a point
tangent to a point on the earth’s surface,
using that for local physics movement.
When ESPDU is actually sent, local
coordinates are changed back to the
global coordinate system. The SEDRIS
SRM package can do all the math.

 Nobody will ever agree on which way the
local coordinate system axes should
point for all simulations.

30

Presenter
Presentation Notes
Utility methods for conversions are how codebases comply and cooperate.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Coordinate Systems

31

A local Cartesian coordinate system origin is set at {lat, lon, alt}. The simulation
does all calculations and movement in this coordinate system, because it’s convenient.
Before sending entity information out in a DIS ESPDU, convert from local to geocentric
(DIS) coordinates:

Local coordinate system origin
At lat 43.21, lon 78.12, alt 120m, WGS 84X

X (East)

y (North) Entity position can be expressed in:

Local: (10, 10, 4)
Geodetic: 43.21001 N, 78.12012W, 124
UTM: Zone 44N, 266061E, 4788172N, 124M
DIS: 958506.1, 455637.2, 4344627.4

We have enough information to convert
from one coordinate system to another,
if local coordinate system origin known.

Presenter
Presentation Notes
(Ensure participants understand these simple concepts.)

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Dead Reckoning (DR) Algorithms

 If we’re running a visual simulation, how often do we need to send ESPDUs?
 If running at frame rate, maybe about every 1/30th of a second.

 If we have 500 entities in a simulation, this works out to 15,000 UDP messages per
second. If you’re doing other computation on host, this will tax your CPU and network.

 Do we really need to send that fast? If we know how fast and in what direction
an entity is moving, we can “dead reckon” in between receiving each ESPDU
and then interpolate position to draw our entity there.
 Sure, we’re lying to the user. Got a problem with that? If our DR is wrong, we just

correct our position stealthily when we get better info on the next packet. The user won’t
know the difference, probably.

 Due to latency all simulation participants are a little out of sync anyway.

32

Presenter
Presentation Notes
This is applying relatively simple math to everyday physics. This is conceptual similar to how people fly, sail and drive.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Dead Reckoning between ESPDU Snapshots

Time
ESPDU Updates

Aircraft position & orientation updated by dead reckoning updates between ESPDU messages

ESPDU 2 ESPDU 3

DR updates

33

Presenter
Presentation Notes
High-order handwaving! Walk through a maneuver, describe what happens from each participant’s perspective.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Dead Reckoning

 What DR algorithm is best? (… wait for it…)
 It depends! In some situations we might want to include acceleration

or angular velocity, but not in others. The ESPDU sender specifies
what DR algorithm to use.

 The sender can also perform its own DR to determine what the
recipients are seeing. If the sender decides the clients are probably
wrong in their guess about where the entity is, it can issue another
ESPDU with better location information.

34

Presenter
Presentation Notes
George Box: “All models are wrong, some are useful.”

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Dead Reckoning (DR), Smoothing, Synchronization

 Dead Reckoning (DR) is projection of entity location based on last received
timestamp, position and vector-based velocities/accelerations.
 Enables recipients to more accurately estimate entity state in-between PDU updates.
 Enables senders to more accurately estimate when to send more-frequent updates.

 Smoothing is a recipient-presentation technique for handling dropped packets.
 Avoid sudden jerky jumps in motion, instead interpolate from prior estimate to new state.
 No need to improperly distract user with corrective actions when recovery is satisfactory.

 Synchronization among multiple players is a blend of capabilities.
 Networking monitoring and management, simulation management, logging, etc.
 Measurable metric: is a “fair fight” taking place among distributed participants?

35

Presenter
Presentation Notes
Hitting the “sweet spot” of where physics, math, networking, modeling, simulation, perception and reality align acceptably.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: keeping it real, with less throughput required

 Dead Reckoning (DR) algorithms use projected trajectory information (such as
linear or rotational velocities and accelerations to compute how often network
updates need to be sent. Helpful for quiet and intensely active intervals.

 Visual smoothing techniques hide when packets are dropped or arrive late.
Entity display smoothly interpolates to the correct location and direction,
avoiding distracting jumps that do not correctly represent behavior anyway.

 Having each individual entity honorably compute whether collisions occurred
takes advantage of highest fidelity information with least computation, avoiding
expensive time delays and greater inaccuracies of server-based adjudications.

36

Presenter
Presentation Notes
No single optimization is possible. This is a tradeoff so that DIS can meet the shared expectations of participants.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Learning About the World and Heartbeat

 If we run a DIS simulation, how do we learn about all other entities in the world?
 One design possibility is to use a master server. Instead, the designers chose for DIS to

be peer-to-peer; there is no central server, and hosts talk to one another directly.
 In DIS essentially all we have to do is listen for ESPDUs. New-entity ESPDUs

contain what we need to know: entity type, location, velocity, orientation. This is
simple and avoids a single point of failure, making configuration easier.
 There are also Simulation Management PDUs for announcing arrival, removal, etc.

 To make this work, every entity must periodically send a time-stamped ESPDU
even if its state hasn’t changed. This is called a heartbeat. Usually entities must
send an ESPDU at least once every five seconds.

37

Presenter
Presentation Notes
Discovery of new entities, confirmation of known entities, learning of lost entities.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Timestamp

 One of the oddities of UDP is that UDP packets may be duplicated during
TCP/IP routing; we send a single packet, but two might arrive nevertheless.

 UDP packets may also arrive out of order. We send packets in order A, B, C,
but they arrive in order C, A, B
 This creates problems for position updates! How to handle?

 DIS includes a timestamp field to detect these kinds of problems:
 The field typically represents time since the top of the hour (as common practice).
 If the next packet we receive has a timestamp before the last packet we processed,

then we can discard it; it’s old information that has been obviated by new data.
 Time coordination between hosts is useful but not required.

38

Presenter
Presentation Notes
Accurate shared time is a great benefit that helps DIS accurately model interactions occurring across the network.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Timestamp

Host A sends 1 and then 2. Host B receives 2, and then 1.
We should discard 1, because we know it’s older than 2,
due to its older timestamp.

2 1

1 2

39

Presenter
Presentation Notes
OMG the network isn’t perfect?? That is correct… this is an example of how we cope.

Note how DIS design turns a potential weakness into a robustness feature.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Entity State PDU

 So far we’ve looked at an ESPDU, which contains
 Entity ID
 Entity Type
 Position, orientation, velocity, etc.
 Specifies a DR algorithm for the receiver to use
 Timestamp

 We’ve also seen that we need to agree upon a coordinate system,
and agree on the enumerations that describe things like entity type.

40

Presenter
Presentation Notes
But wait there’s more… a lot more.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: no approved Application Programming Interface (API) per se

 DIS doesn’t have an API. This seems strange to people coming from HLA or
TENA, but reflects common practice in networking protocols.
 The standardized part is the format of the messages on the wire. The standard is silent

about how to create or receive those messages.
 Different DIS vendors have different APIs, but all produce the same format messages.

This is in contrast to HLA, which has a standard API, but is silent about the format of
messages on the wire. As a result, different HLA RTI vendors usually use different
message formats for exchanging information.

 TENA standardizes the API, and there is a single approved implementation of the RTI
equivalent; this sidesteps the wire standard problem because there is only one
approved equivalent of the RTI.

41

Presenter
Presentation Notes
Theme to convey: vive la difference.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Message Format Standardized

42

Vendor A API for
DIS

Vendor B API for
DIS

Vendor C API for
DIS

Standard Format Messages

JCATS Sim Code ACME Sim Code

ONE-SAF Sim
Code

Network

Presenter
Presentation Notes
Can we all just get along? Yes, with commonly understood messages.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

HLA: API Standardized

43

HLA RTI API HLA RTI API

HLA RTI API

RTI Vendor-Specific Format
Messages

JCATS ACME Sim

ONE-SAF

Network

While the API is standard, implementations of HLA RTI API from different vendors
are allowed to produce messages in different formats.

Presenter
Presentation Notes
Can we all just get along? Yes, with commonly accessed federated object models.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: API

 The implications of this are that while HLA has a standardized API, RTIs from
different vendors can’t typically talk directly to each other. This makes changing
vendors easy, but makes getting RTIs from different vendors talking to each
other hard--you need to use a gateway.

 DIS in contrast makes changing vendors hard (since it involves changing the
API your simulation code uses) but talking between vendors easy (since all the
messages on the wire are in the same format)
 The lack of an API can help when using a variety programming languages, such as

Objective-C, C#, Python, and JavaScript. Since there’s no official API, just make one up
that fits your application’s programming language. As long as they produce standard
messages on the wire, the API creating packets doesn’t affect anyone else.

44

Presenter
Presentation Notes
Programmers need some kind of API to create and read PDUs. You may use any from a variety of software libraries (for example Open-DIS) but your PDU messaging mileage won’t vary.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: PDU Format

 Remember, all this information is being sent in binary format in (typically) a
UDP packet.

 The exact format that an ESPDU must have on the wire is specified in the DIS
standard. This includes byte order.

 For example, the EntityID field starts 12 bytes into the ESPDU message, is in
the order (site, application, entity), and each field entry is 16 bits long, in
network byte order, and unsigned.

45

Presenter
Presentation Notes
Attention to detail is necessary for the simulation plumbing to work properly. Pipes + water == network sockets + PDU messages.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: ESPDU Format

46

Presenter
Presentation Notes
Theme to convey: be not afraid, the IEEE DIS specification explains everything well. Proof point is decades of interoperability by diverse participants.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Looking at ESPDUs

 What do ESPDUs look like? We can examine them on the network
with a free tool called Wireshark, which can decode DIS packets
 http://www.wireshark.org

 Remember, it’s the format of the messages on the wire that count.
The DIS standard specifies the exact format of binary messages, and
any tool that produces or consumes those messages is fine with DIS.
How you create them (or consume them) is none of DIS’s business.

47

Presenter
Presentation Notes
We are moving from theory to practice.

http://www.wireshark.org/

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Wireshark: Capture Packets

48

Presenter
Presentation Notes
Describe wireshark’s immense generality, availability, capability. Viva open source!

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Wireshark: Decode Packets as DIS

49

Presenter
Presentation Notes
Wireshark does DIS too.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Wireshark: Examine DIS Packets

50

Presenter
Presentation Notes
Drill down to any/every level of detail lets everyone know what is really happening/working (and also enables debugging occasional mysteries).

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Implementations

 Format
 We know what information we want to send: entity type, entity ID, position,

orientation, etc.
 We know what coordinate system we want to use.
 We know where to find arbitrary, agreed-upon enumeration identifier

values—the EBV document.
 We know some PDU types: entity state PDU, etc.

 How do we get the information into the format we want on the wire?
 This is where DIS implementations come in.

51

Presenter
Presentation Notes
Review checkpoint. We’ve covered a lot – everyone on board?

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Implementations

 Where can you get a DIS implementation?
 Write your own (cough cough)
 Buy one. There are several commercial implementations and many have excellent support.
 Use an open source version—”free as in free puppy” (also includes freedom to fix)

 Open-DIS (https://github.com/open-dis - formerly http://open-dis.sourceforge.net)
 Java updated to full coverage of DIS7, planning work on C-DIS and DIS8
 Planning to regenerate C++, C#, Objective-C, JavaScript, Python in 2021

 KDIS (http://sourceforge.net/projects/kdis) C++ (active)
 Aquarius (http://sourceforge.net/projects/aquariusdispdu) C++ (retired)
 JDIS (http://sourceforge.net/projects/jdis) Java (inactive)

52

Presenter
Presentation Notes
Have fun out there. Emphasize that Open-DIS strives for exact compliance, and errors (actual or perceived) can be fixed by the community.

Note current work to establish a DIS unit-test suite to confirm repeatability by software applications and API libraries.

https://github.com/open-dis
http://open-dis.sourceforge.net
https://github.com/open-dis/open-dis7-java
http://sourceforge.net/projects/kdis
http://sourceforge.net/projects/aquariusdispdu
https://sourceforge.net/p/forge/site-support/2040/
http://sourceforge.net/projects/jdis

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Sending

 Remember, DIS has no official API. Every implementation is different. This
example will use the Open-DIS API codebase. Implementation available at
https://github.com/open-dis

 Source code now at https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500

 Examples may contain supporting libraries for additional independent things .

 All code is BSD open-source license; nonviral, use any way you see fit.

53

https://github.com/open-dis
https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Send ESPDUs in Java

54

Presenter
Presentation Notes
Typical code excerpt for sending, uses Open-DIS

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Send PDUs in Javascript

Can use HTML5 Browser geolocation and Javascript to send
DIS from a web page

55

Presenter
Presentation Notes
Typical code excerpt for sending to a web browser, uses Open-DIS

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Receive PDUs in Java

56

Presenter
Presentation Notes
Typical code excerpt for receiving, uses Open-DIS

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS Sending and Receiving PDUs

 There are similar idioms for other languages such as C++, Objective-C
(IOS/MacOS), JavaScript, Python, C# (Windows phone, Unity 3D)

 Note that this requires that you do a bit of socket programming, which
TENA and HLA hide from you. Socket programming isn’t that bad…

57

Presenter
Presentation Notes
Virtue of programming: you only have to get it right once!

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Visualizing DIS Data via Online Map using DISWebGateway

 DISWebGateway running at
 http://track.movesinstitute.org

 Java sender & receiver for DIS

 Can receive native DIS from
existing DIS applications

 Web-based map that shows DIS
entity locations

58

Code refurbishment
in progress…

Presenter
Presentation Notes
Exemplar demo. Server is being moved, will be ready for IITSEC (being updated for 2 classes at MOVES).

https://github.com/open-dis/DISWebGateway
http://track.movesinstitute.org/

59

Presenter
Presentation Notes
A script moves entities around a GoogleMaps display by animating KML placemarks with DIS.

60

Presenter
Presentation Notes
A script moves entities around an OpenStreetMaps display by animating KML placemarks with DIS.

61

Code refurbishment
in progress…

Presenter
Presentation Notes
An HTML web-page form is used to create and send DIS ESPDU stream, source-code script uses Open-DIS JavaScript library with HTML.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Shoot at Something

 We’ve been sending ESPDU messages back and forth, but there are
dozens of other sorts of messages. What if we want to shoot at
someone? What does this involve?

 We can use a Fire PDU, which contains
 The entity ID of the shooter
 The entity ID of the target (if known)
 The type of munition being fired, fuse, quantity, etc. This is very similar to

the entity type
 Enough information to compute the path of the munition (if desired)

62

Presenter
Presentation Notes
We are now moving from sending/receiving to interacting.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Shoot at Something, then…

 The Detonation PDU usually follows a Fire PDU. It contains
 Location of detonation, shooter entity ID, target entity ID
 Fuse, munition type, and so on

 When a Detonation PDU is received simulations assess and report damage to
their own entities, not to others.
 This means simulations are on the “honor system” for determining their own damage;

thus James T. Kirk can beat the unwinnable Kobayashi Maru scenario.
 Here is a harsh adjective to describe cheating in distributed scenarios: boring.
 For military simulations we are much more interested in strengths, vulnerabilities and

possibilities that may occur in the real world. Thus cheating is also critically unhelpful.
 Trusted participants using trusted software suites also reduces the risk of cheating.

63

Presenter
Presentation Notes
Shared state for collision dynamics is fundamental to many many virtual environment interactions: driving, shooting, sensing, tracking, etc. etc. etc.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS Shooting

Fire! I’m entity (17, 23, 42), shooting
at entity (123, 7, 12) with a HEAT round
from (x, y, z)

Explosion! There’s an detonation of a HEAT
round at (x’, y’, z’).

All entities now assess the damage to themselves by the
Detonation at (x’, y’, z’)

64

Presenter
Presentation Notes
Walk through an interaction.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Arbitrary Data

 You can also exchange arbitrary data between DIS simulation participants with
the DataQuery and Data PDUs.
 Participant sends a DataQuery PDU addressed to another participant
 That participant responds with a Data PDU

 The data itself is sent as “fixed variable datums” or “variable data datums”.
Therefore it’s up to you to specify the exact format of these

65

Presenter
Presentation Notes
A protocol is a handshake, carefully choreographed.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS: Other messages

 There are many other messages that can be used in DIS
 Electronic warfare
 Logistics
 Directed energy weapons
 Voice/Intercom
 Collisions
 Simulation management
 Data exchange

 It’s a big topic! Many different “conversations” can occur among entities.
 But the basics are: a standard format for exchanging state information.

66

Presenter
Presentation Notes
Lots more can be said!

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS and Other Standards: HLA, TENA

 How can DIS interoperate with HLA or TENA?

 HLA Real-time Platform Reference Federation Object Model (RPR-FOM)
 Intentionally matches DIS, same entity types, same entity IDs and coordinate system, etc.
 HLA object model mapping makes transition from DIS to HLA easy and consistent
 Several gateways to translate between DIS and RPR-FOM. JBUS, AMIE, others
 Guidance, Rationale and Interoperability Modalities (GRIM) for RPR-FOM standard

provides further rules and usage information.
 https://www.sisostds.org/productspublications/standards/sisostandards.aspx

 TENA has generalized gateway functionality that can map TENA events to DIS
and vice versa. It generally uses the same coordinate system, entity types, etc.

67

Presenter
Presentation Notes
There is a large community of practitioners and programmers out there.

https://www.sisostds.org/productspublications/standards/sisostandards.aspx

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS Research Topic: DIS in the Web Page

 Websockets are a standard from IETF and W3C. The idea is to provide a direct
Javascript-based TCP socket into a web page without having to use AJAX
polling techniques. Widespread browser support.

 JavaScript is a widely used language for dynamic web content.
 WebGL is JavaScript binding for OpenGL which allows us to use accelerated 3D

graphics inside the web page.
 WebGL can be the substrate for higher level graphics standards such as Extensible 3D

Graphics Standard (X3D).

 Put all three together and you can implement a networked virtual environment
in a web page.

68

Presenter
Presentation Notes
Lots of work, slowly steadily progressing. Web technology provides the greatest possible footprint, either on big internet or private military networks.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS Research Topic: 3D in the Web Page

69

Web
Server

Network with
conventional
binary-format
DIS packets

Web pages with Javascript
WebGL scene updated by
DIS over a Websocket

Presenter
Presentation Notes
For example: it has to be simple to be repeatable and reusable.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS Research Topic: 3D in the Web Page

70

Presenter
Presentation Notes
Demo. Server may change, details will be confirmed at IITSEC.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Applied Research using WebLVC

 Excellent combinations of WebGL/X3D, WebSockets, and fast JavaScript in the
web browser have emerged in recent years.
 Open-DIS library can send DIS PDUs directly into a web browser.

 SISO WebLVC Product Development Group (PDG)
 https://www.sisostds.org/StandardsActivities/DevelopmentGroups/WebLVCPDG.aspx

 One of many examples: Virtual World Framework
 http://virtualworldframework.com and https://en.wikipedia.org/wiki/Virtual_world_framework

 Active research topic… but no wide-scale “Ready Player One” arenas for DIS, yet

71

Presenter
Presentation Notes
There is no one single way to do it! There are many ways… and more work to do. Participants have an important role to play.

https://github.com/open-dis
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/WebLVCPDG.aspx
http://virtualworldframework.com/
https://en.wikipedia.org/wiki/Virtual_world_framework

@IITSEC NTSAToday IITSEC IITSEC IITSEC

DIS Tutorial Summary

 DIS applications exchange state information among distributed set of players.

 Defines syntax and semantics for a series of binary-formatted messages, with each
packet’s bytes, data representation and functionality exactly defined.

 Different software APIs can implement the same “over the wire” data standard.

 Applications focused on large-scale, high-fidelity, virtual / constructive simulations.

 Common concepts: entity types, entity IDs, heartbeats, coordinate systems.

72

Presenter
Presentation Notes
Are we clear? Remembering key points remaining constant among many details.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Resources and References

 SISO: http://sisostds.org
 SISO DIS / RPR FOM Protocol Support Group:

https://www.sisostds.org/StandardsActivities/SupportGroups.aspx
 Open-DIS: https://github.com/open-dis and
 SEDRIS SRM: http://sedris.org
 Kdis: http://kdis.sourceforge.net
 Wireshark: http://wireshark.org
 X3D Graphics: http://www.web3d.org/x3d/what-x3d and http://x3dgraphics.com/slidesets
 WebGL: http://www.khronos.org/webgl
 WebLVC: https://www.sisostds.org/StandardsActivities/DevelopmentGroups.aspx

 WebSockets: http://tools.ietf.org/html/rfc6455 , http://www.w3.org/TR/websockets

73

This tutorial and additional examples can be found at
https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500

https://github.com/open-dis/open-dis7-java

Presenter
Presentation Notes
More references available online. This takes study and, of course, we learn most of all from actual practice. Questions welcome, the community learns together.

http://sisostds.org
https://www.sisostds.org/StandardsActivities/SupportGroups.aspx
https://github.com/open-dis
http://sedris.org
http://kdis.sourceforge.net
http://wireshark.org
http://www.web3d.org/x3d/what-x3d
http://x3dgraphics.com/slidesets
http://www.khronos.org/webgl
https://www.sisostds.org/StandardsActivities/DevelopmentGroups.aspx
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets
https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500
https://github.com/open-dis/open-dis7-java

@IITSEC NTSAToday IITSEC IITSEC IITSEC

TODO: lots of work in progress!

Much work is ongoing in DIS at NPS. Several areas of improved focus were realized
during the SISO Simulation Interoperability Workshop (SIW) held in Orlando Florida
February 2020. The following work is continuing for this year:
 Improved Java enumerations (over 22,000 values) regularly autogenerated,
 Improved OpenDIS7 library, full coverage of all 72 PDUs, growing set of examples,
 Thesis work to support unit testing of simulations via DIS streams and LVC

connectivity including Extensible 3D Graphics (X3D) Standard now available,
 Planned work in Compressed DIS (C-DIS) encoding and DIS version 8

development, looking for sponsors or partners.
We look forward to steady tutorial, workshop and library improvements each year.

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Thesis of Interest

 Tobias Brennenstuhl, REPEATABLE UNIT TESTING OF DISTRIBUTED
INTERACTIVE SIMULATION (DIS) PROTOCOL BEHAVIOR STREAMS
USING WEB STANDARDS, Masters Thesis, June 2020. (online)

Presenter
Presentation Notes
Abstract. The IEEE Distributed Interactive Simulation (DIS) protocol is used for high-fidelity real-time information sharing among simulations and trainers across the entire international Modeling and Simulation (M&S) community. If archivally saved and replayed, DIS streams have the potential to become a valuable source of Big Data. The availability of archived prerecorded behavior streams for replay, adaptation, and analysis can benefit an immense variety of application areas. The computer science principle “a stream is a stream” indicates that data in motion is equivalent to data at rest. This characteristic can enable powerful capabilities for DIS.
 This thesis presents prototypes to demonstrate how various forms of repeatability are key to gaining improved benefits from DIS stream analysis. Unit testing of DIS behavior streams allows confirmation of both repeatability and correctness when testing all manner of applications, exercises, simulations, and training sessions. A related use case is automated after-action review (AAR) from recorded DIS streams. This thesis also shows how a DIS stream is converted into autogenerated code that can animate an X3D Graphics model. Many obstacles were overcome during this work, and so various best practices are provided. Of note is that unit testing might even become a contract requirement for incrementally developing and stably maintaining Live Virtual Constructive (LVC) code bases. This progress provides many opportunities for future work.

https://gitlab.nps.edu/Savage/NetworkedGraphicsMV3500/-/tree/master/documentation/theses

@IITSEC NTSAToday IITSEC IITSEC IITSEC

Learning Objectives

The learner will be able to…

 Identify what standards are used by distributed simulations for military use.

 Identify what types of communication protocols are used for various networks.
 Identify what aspects needs to be standardized, and what aspects can be

customized, to support diverse simulations with differing models and goals.
 Identify how DIS techniques for dead reckoning (DR), visual smoothing and

distributed collision detection can reduce network traffic.

 Learn how to apply new capabilities expected for Compressed DIS and DISv8.

76

Presenter
Presentation Notes
Discuss how connecting all manner of simulations, namely Live Virtual Constructive LVC, is the necessary path for connecting to Command and Control (C2) systems. Establishing such connections between traditionally separate domains is central to conference theme,
“The Future is Now“

Note that, for example, common tutorial topic “What coordinate systems are used?” is also central to requirements for connecting C2 and M+S.
Slide 2 and last slide are identical.

	Slide Number 1
	Learning Objectives
	Topics
	Distributed Simulation Terms
	Live, Virtual, Constructive (LVC) Example
	Live, Virtual, Constructive (LVC) Example, Illustrated
	What Do We Want to Do?
	State Information in Distributed Simulations
	What’s So Hard About That?
	Distributed Simulation Standards
	State Information Exchange Standards
	TENA
	High Level Architecture (HLA)
	Distributed Interactive Simulation (DIS)
	Distributed Interactive Simulation (DIS) functionality
	Networking: the Protocol Stack
	TCP/IP and UDP
	DIS Messages
	DIS Messages
	PDU Families are Diverse
	DIS Messages: Entity State PDU
	Site, Application, Entity ID: a Unique Identifier
	DIS: Entity IDs
	Entity IDs
	DIS: Entity Type
	Entity Type
	Entity Type From EBV Document
	Entity Type
	Entity State PDU: Position
	DIS: Coordinate Systems
	Coordinate Systems
	DIS: Dead Reckoning (DR) Algorithms
	DIS: Dead Reckoning between ESPDU Snapshots
	DIS: Dead Reckoning
	Dead Reckoning (DR), Smoothing, Synchronization
	DIS: keeping it real, with less throughput required
	DIS: Learning About the World and Heartbeat
	DIS: Timestamp
	DIS: Timestamp
	DIS: Entity State PDU
	DIS: no approved Application Programming Interface (API) per se
	DIS: Message Format Standardized
	HLA: API Standardized
	DIS: API
	DIS: PDU Format
	DIS: ESPDU Format
	DIS: Looking at ESPDUs
	Wireshark: Capture Packets
	Wireshark: Decode Packets as DIS
	Wireshark: Examine DIS Packets
	DIS: Implementations
	DIS: Implementations
	DIS: Sending
	DIS: Send ESPDUs in Java
	DIS: Send PDUs in Javascript
	DIS: Receive PDUs in Java
	DIS Sending and Receiving PDUs
	Visualizing DIS Data via Online Map using DISWebGateway
	Slide Number 59
	Slide Number 60
	Slide Number 61
	DIS: Shoot at Something
	DIS: Shoot at Something, then…
	DIS Shooting
	DIS: Arbitrary Data
	DIS: Other messages
	DIS and Other Standards: HLA, TENA
	DIS Research Topic: DIS in the Web Page
	DIS Research Topic: 3D in the Web Page
	DIS Research Topic: 3D in the Web Page
	Applied Research using WebLVC
	DIS Tutorial Summary
	Resources and References
	TODO: lots of work in progress!
	Thesis of Interest
	Learning Objectives

