-
James Goppert authoredJames Goppert authored
Trim.cpp 9.24 KiB
/*
* Trim.cpp
* Copyright (C) James Goppert 2010 <james.goppert@gmail.com>
*
* Trim.cpp is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* Trim.cpp is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "initialization/FGTrimmer.h"
#include "math/FGStateSpace.h"
#include <iomanip>
#include <fstream>
#include "models/FGAircraft.h"
#include "models/propulsion/FGEngine.h"
#include "models/propulsion/FGTurbine.h"
#include "models/propulsion/FGTurboProp.h"
#include "math/FGNelderMead.h"
#include <stdexcept>
template <class varType>
void prompt(const std::string & str, varType & var)
{
std::cout << str + " [" << std::setw(10) << var << "]\t: ";
if (std::cin.peek() != '\n')
{
std::cin >> var;
std::cin.ignore(1000, '\n');
}
else std::cin.get();
}
class Callback : public JSBSim::FGNelderMead::Callback
{
public:
void eval(const std::vector<double> &v)
{
//std::cout << "v: ";
//for (int i=0;i<v.size();i++) std::cout << v[i] << " ";
//std::cout << std::endl;
}
} callback;
int main (int argc, char const* argv[])
{
using namespace JSBSim;
// variables
FGFDMExec fdm;
fdm.Setdt(1./120);
FGTrimmer::Constraints constraints;
std::cout << "\n==============================================\n";
std::cout << "\tJSBSim Trimming Utility\n";
std::cout << "==============================================\n" << std::endl;
// defaults
constraints.velocity = 500;
std::string aircraft="f16";
double rtol = std::numeric_limits<float>::epsilon();
double abstol = 1e-2;//std::numeric_limits<double>::epsilon();
double speed = 1.1; // > 1
double random = 0; // random scale factor added to all simplex calcs
int iterMax = 2000;
bool showConvergeStatus = false;
bool pause = false;
bool showSimplex = false;
bool variablePropPitch = false;
int debugLevel = 0;
// input
std::cout << "input ( press enter to accept [default] )\n" << std::endl;
// load model
prompt("\tdebug level\t\t",debugLevel);
fdm.SetDebugLevel(debugLevel);
std::cout << "model selection" << std::endl;
while (1)
{
prompt("\taircraft\t\t",aircraft);
fdm.LoadModel("../aircraft","../engine","../systems",aircraft);
std::string aircraftName = fdm.GetAircraft()->GetAircraftName();
if (aircraftName == "")
{
std::cout << "\tfailed to load aircraft" << std::endl;
}
else
{
std::cout << "\tsuccessfully loaded: " << aircraftName << std::endl;
break;
}
}
// Turn on propulsion system
fdm.GetPropulsion()->InitRunning(-1);
// get propulsion pointer to determine type/ etc.
FGEngine * engine0 = fdm.GetPropulsion()->GetEngine(0);
FGThruster * thruster0 = engine0->GetThruster();
// flight conditions
std::cout << "\nflight conditions: " << std::endl;
prompt("\taltitude, ft\t\t",constraints.altitude);
prompt("\tvelocity, ft/s\t\t",constraints.velocity);
prompt("\tgamma, deg\t\t",constraints.gamma);
if (thruster0->GetType()==FGThruster::ttPropeller)
prompt("\tvariable prop pitch?\t\t",variablePropPitch);
constraints.gamma *= M_PI/180;
// mode menu
while (1)
{
int mode = 0;
prompt("\tmode < non-turning(0), rolling(1), pitching(2), yawing(3) >",mode);
constraints.rollRate = 0;
constraints.pitchRate = 0;
constraints.yawRate = 0;
if (mode == 0) break;
else if (mode == 1)
{
prompt("\troll rate, rad/s",constraints.rollRate);
prompt("\tstability axis roll",constraints.stabAxisRoll);
break;
}
else if (mode == 2)
{
prompt("\tpitch rate, rad/s",constraints.pitchRate);
break;
}
else if (mode == 3)
{
prompt("\tyaw rate, rad/s",constraints.yawRate);
break;
}
else std::cout << "\tunknown mode: " << mode << std::endl;
}
// solver properties
std::cout << "\nsolver properties: " << std::endl;
std::cout << std::scientific;
prompt("\tshow converge status?\t",showConvergeStatus);
prompt("\tshow simplex?\t\t",showSimplex);
prompt("\tpause?\t\t\t",pause);
prompt("\trelative tolerance\t",rtol);
prompt("\tabsolute tolerance\t",abstol);
prompt("\tmax iterations\t\t",iterMax);
prompt("\tconvergence speed\t",speed);
prompt("\trandomization ratio\t",random);
std::cout << std::fixed;
// initial solver state
int n = 6;
std::vector<double> initialGuess(n), lowerBound(n), upperBound(n), initialStepSize(n);
lowerBound[0] = 0; //throttle
lowerBound[1] = -1; // elevator
lowerBound[2] = -90*M_PI/180; // alpha
lowerBound[3] = -1; // aileron
lowerBound[4] = -1; // rudder
lowerBound[5] = -90*M_PI/180; // beta
upperBound[0] = 1; //throttle
upperBound[1] = 1; // elevator
upperBound[2] = 90*M_PI/180; // alpha
upperBound[3] = 1; // aileron
upperBound[4] = 1; // rudder
upperBound[5] = 90*M_PI/180; // beta
initialStepSize[0] = 0.2; //throttle
initialStepSize[1] = 0.1; // elevator
initialStepSize[2] = 0.1; // alpha
initialStepSize[3] = 0.1; // aileron
initialStepSize[4] = 0.1; // rudder
initialStepSize[5] = 0.1; // beta
initialGuess[0] = 0.5; // throttle
initialGuess[1] = 0; // elevator
initialGuess[2] = 0; // alpha
initialGuess[3] = 0; // aileron
initialGuess[4] = 0; // rudder
initialGuess[5] = 0; // beta
// solve
FGTrimmer trimmer(fdm, constraints);
FGNelderMead * solver;
try
{
solver = new FGNelderMead(trimmer,initialGuess,
lowerBound, upperBound, initialStepSize,iterMax,rtol,
abstol,speed,random,showConvergeStatus,showSimplex,pause,&callback);
while(solver->status()==1) solver->update();
}
catch (const std::runtime_error & e)
{
std::cout << e.what() << std::endl;
return 1;
}
// output
try
{
trimmer.printSolution(solver->getSolution()); // this also loads the solution into the fdm
}
catch(std::runtime_error & e)
{
std::cout << "caught std::runtime error" << std::endl;
std::cout << "exception: " << e.what() << std::endl;
return 1;
}
//std::cout << "\nsimulating flight to determine trim stability" << std::endl;
//std::cout << "\nt = 5 seconds" << std::endl;
//for (int i=0;i<5*120;i++) fdm.Run();
//trimmer.printState();
//std::cout << "\nt = 10 seconds" << std::endl;
//for (int i=0;i<5*120;i++) fdm.Run();
//trimmer.printState();
std::cout << "\nlinearization: " << std::endl;
FGStateSpace ss(fdm);
ss.x.add(new FGStateSpace::Vt);
ss.x.add(new FGStateSpace::Alpha);
ss.x.add(new FGStateSpace::Theta);
ss.x.add(new FGStateSpace::Q);
ss.x.add(new FGStateSpace::Theta);
ss.x.add(new FGStateSpace::Q);
if (thruster0->GetType()==FGThruster::ttPropeller)
{
ss.x.add(new FGStateSpace::Rpm0);
if (variablePropPitch) ss.x.add(new FGStateSpace::PropPitch);
int numEngines = fdm.GetPropulsion()->GetNumEngines();
if (numEngines>1) ss.x.add(new FGStateSpace::Rpm1);
if (numEngines>2) ss.x.add(new FGStateSpace::Rpm2);
if (numEngines>3) ss.x.add(new FGStateSpace::Rpm3);
}
ss.x.add(new FGStateSpace::Beta);
ss.x.add(new FGStateSpace::Phi);
ss.x.add(new FGStateSpace::P);
ss.x.add(new FGStateSpace::R);
ss.x.add(new FGStateSpace::Alt);
ss.x.add(new FGStateSpace::Psi);
ss.x.add(new FGStateSpace::Longitude);
ss.x.add(new FGStateSpace::Latitude);
ss.u.add(new FGStateSpace::ThrottleCmd);
ss.u.add(new FGStateSpace::DaCmd);
ss.u.add(new FGStateSpace::DeCmd);
ss.u.add(new FGStateSpace::DrCmd);
// state feedback
ss.y = ss.x;
std::vector< std::vector<double> > A,B,C,D;
std::vector<double> x0 = ss.x.get(), u0 = ss.u.get();
std::vector<double> y0 = x0; // state feedback
std::cout << ss << std::endl;
ss.linearize(x0,u0,y0,A,B,C,D);
int width=10;
std::cout.precision(3);
std::cout
<< std::fixed
<< std::right
<< "\nA=\n" << std::setw(width) << A
<< "\nB=\n" << std::setw(width) << B
<< "\nC=\n" << std::setw(width) << C
<< "\nD=\n" << std::setw(width) << D
<< std::endl;
// write scicoslab file
std::ofstream scicos(std::string(aircraft+"_lin.sce").c_str());
scicos.precision(10);
width=20;
scicos
<< std::scientific
<< aircraft << ".x0=..\n" << std::setw(width) << x0 << ";\n"
<< aircraft << ".u0=..\n" << std::setw(width) << u0 << ";\n"
<< aircraft << ".sys = syslin('c',..\n"
<< std::setw(width) << A << ",..\n"
<< std::setw(width) << B << ",..\n"
<< std::setw(width) << C << ",..\n"
<< std::setw(width) << D << ");\n"
<< aircraft << ".tfm = ss2tf(" << aircraft << ".sys);\n"
<< std::endl;
}
// vim:ts=4:sw=4